SuperH] (SH) 32-Bit RISC MCU/MPU Series

SH7750

High-Performance RISC Engine

Programming Manual

HITACHI

ADE-602-156

Rev. 1.0
8/7/98
Hitachi, Ltd.
MC-Setsu

When using this document, keep the following in mind:
1.

2.

Notice

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, th
whole or part of this document without Hitachi’'s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this do

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’'s semiconductor products. Hitachi assume
responsibility for any intellectual property claims or other problems that may result fro
applications based on the examples described herein.

No license is granted by implication or otherwise under any patents or other rights of
third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi's sale
company. Such use includes, but is not limited to, use in life support systems. Buyers
Hitachi’s products are requested to notify the relevant Hitachi sales offices when plan
use the products in MEDICAL APPLICATIONS.

D

cument.

ANy

5
of
ning to

Contents

P O AR e
SECHON L OVEBIVME ...eiiii e et e e e 3
1.1 SHT7750 FRATUSR......ui ettt ettt e ettt e e e et e e e e eni e eeem C T
=Y o Tod QI 1= Vo | o PP 8.....
Section 2 Programming Mode...........ccooiiiiiiiiiii 9
2.1 DAt FOIMALS. ...ttt e e e e et e e et e e e e e erra e e eeead R
2.2 Register ConfigUratih............oiiiiiiiiiii e ee e e e e e e e e e et e e e e e eara e eeeeams 9.
2.2.1 Privileged Mode and BasiK...........ccceuuuiiieiiiiiiiiiiee e 9....
2.2.2 GENEral REQISIRI.....ccciiiii i e eeeiiie e et e e e e e e e e e et e e e e earaann e 13....
2.2.3 Floating-Point REQISER........cccuuuiii e eeeaaaann 15...
2.2.4 CoNtrol REQISIOE.......cciiiie e e e e e e e a s 17....
2.2.5 SYSIEM REQISERL.....ouiiiii i e e e e e e et e e e e e et s 18....
2.3 Memory-Mapped REQISERL.........uuii i e e e e e e e aaaaan 20....
2.4 Data Format in REQISERY.......ui i e e e e et e e e e eaen 21....
2.5 Data FOrmats in MEIMMDL........ouiiiii e e e e e e e e e e e e et e e e e e e araaa e s 21...
2.6 PrOCESSON STAHE......ceiieiieiii ettt ettt e e ettt e e e e e e r e e e e e e enaa o 22.....
2.7 ProCESSOr MOBE.......oiiieiiiiiiiiie et e ettt e e e et e e ettt e e e e e e e e e e e eeabbabn e e eeeeeon 23.....
Section 3 Memory Management Unit (MMU...........ccoooiviiiiiiiiiiiiiiie e, 25
N @ YT T TSP PR 25......
BLd L FRALUIR. ...ttt ettt et e 5.
3.1.2 ROlE Of the MMU.....ooiiiiiiiiiiii e 25......
3.1.3 Register CoNfiQUIatD.........cccuuuiiierrieiiiieeeee s s e e e ee et e e e e e e e e e eaaa e e e 28...
N I O 11 1T P PPRPPT 28.....
A = = To (1) (= g B L=t Yo T o)1 U 29.....
TG I =T 0[] S o - P 32......
3.3.1 Physical MEMOIY SPBC........oiieiiiiiiiii et e e e e e een 32...
3.3.2 EXternal MemOry SPEAC........cccooiiiiiiiiiiiiieiiiiiiiiiiiie e e e e e e e e e e e e e eeeeeeeenane 35...
3.3.3 Virtual MEMOIY SP@E.......uuuuuuiiiiiiiiiiieee ettt e e e e e eeeaeeean 36...
3.3.4 ON-Chip RAM SPEE......ciiiiiiiiiiiiiiiiiiiiiaa s e e e e e et et e e eeeeeaeeeeaeaaaen 37...
3.3.5 AdAress TranSIatio..........ccoeeeeeiiiiiiiiiiieceeeeit e e e e e e e e e e e e e e e eeeeeaeas 37....
3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode.............. 38..
3.3.7 Address Space ldentifier (ASLD..........uuuuurriimiiiiiee e 38..
I I B U o1 PP 38......
3.4.1 Unified TLB (UTLB) Configuratin.............ceeeeeieiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 38.
3.4.2 Instruction TLB (ITLB) Configuratit..............ccovvvvvvrerrevrreeerererniniiiinnnnnnnn 42,
3.4.3 Address Translation Metho.............viiiiiiiiiiiee 43..

Rev. 1.0, 08/98, page i of viii
HITACHI

S5 IMMU FUNCHIOID. ... et e et et e e et e et et e s e e e et e ea st et sasnem 45.....

3.5.1 MMU Hardware ManagemB..........ccoeuuuuiiiaeiiiiiea e e e e eeeenn 45..
3.5.2 MMU Software ManagemEBIN.........ccuuuiiaiiiiiiiiieee et eeeeeai e 45..
3.5.3 MMU InStruction (LDTLBccoiiiiieieeeeee e 45..
3.5.4 Hardware ITLB Miss Handlfn...............uvvuiiiiiiiiiiiiiiieeeeeeeeeeeeeee 4B
3.5.5 Avoiding Synonym Problems...............ueuuiiiiiiii e a47......
3.6 MIMU EXCEPLIOIS. ...t ieeeeeiieieieee ettt e e e e et et e e e e e e b e naaea s n 48.....
3.6.1 Instruction TLB Multiple Hit EXCEPLD.........ccooviiiiiii 48
3.6.2 Instruction TLB MiSS EXCEPUN........cooiiiiiiiiiiieee 4 49..
3.6.3 Instruction TLB Protection Violation EXCeio...........coooveeviiiviiiiie 50
3.6.4 Data TLB Multiple Hit EXCEPIIM..........coovviiiiiiiiiiiiiiiiieeiee e ee e eeeeeeeeeeeeeas 51.
3.6.5 Data TLB MiSS EXCEPLION.......ccciiiiiiiiiiiiiiiiiiiiiiiea s e e e e e e e e e eeeeeeeeeeennees 51......
3.6.6 Data TLB Protection Violation EXCepLioNn............ccovvvviviviiiiiiiimiiiiiiiiiiiininns 52.....
3.6.7 Initial Page Write EXCEPII0........cccoiiiiiiiiiiiiiiiiiiiiiiii e h3..
3.7 Memory-Mapped TLB CONfIQUIATI............uuurriiiiiiiiiiiieee e eeeee e h4..
3.7. 1 ITLB AQUIreSS AIMB...ccciiiiiiiiiiiiiiiiitiiiae s e e e e e e e ettt ettt e et e bbb 55...
3. 7.2 ITLB Data AITAYL ...ttt ettt e e e e e 56....
3. 7.3 ITLB DA AITAYRcceeeiiiieeeeeiee et ettt e e e e e eennas 57....
3. 7.4 UTLB AQAIESS AL ...ttt e e e e e e e e e e e e 57...
3. 7.5 UTLB DAta AMTAYL.......coieiieeiiiie ettt 59...
3. 7.6 UTLB DAta ATAY2...... oo iiiieiiiie ettt 60....
SECHON 4 CaACER ...t e 61....
A1 OVEIVIBY ...ttt e e e e e e et ettt e e e ettt e e e e e e e et e et e e e e e e e e n bbb 61......
o I T L PP 6l.....
4.1.2 Register ConfigUIati..........cuuuuiiiiiiiiii e 62...
4.2 REQISTEr DESCIIPTIMI ... ittt e ettt e e e e e e e e e e e et e e eeeeeeennnnrnreea 62....
4.3 Operand Cache (QC. e e e e e e 65.....
4.3.1 CONFIGUIATION. ..cetiiitiiietiee ettt e ettt e bbb e e e e e 65.......
4.3.2 Read OPEIaliiD.........ccuuumuuuuiuiiaiie e e e ee ettt ettt e e e e e et e e e e eeeeeeneeeaa 66....
4.3.3 WIItE OPEIALID. ... i e eeeeeeeeieiieeeett ettt e ettt e e e e e e e e e e eeeeeeenn 67....
4.3.4 Write-Back BUFE..........ooiiiiiiii e 69....
4.3.5 Write-Through BUFE.........coooiii e 69...
4.3.6 RAM MOGE....ceiiiiiiiii et e e e e e e e e e e eeeeen 69......
4.3.7 OC INAEX MOB.......ccoeiiiiiiiiiieie e e e e e e e e 70....
4.3.8 Coherency between Cache and External Mgmar...............cccccceevviniininnin 71
4.3.9 PrefetCh OPeratio.........ccooiiiiiiiiiiiiiiiiiii e e et e e e e 71....
4.4 InStruction CaChe (IC....eeieiiiiiiiiieie e 72....
4.4.1 CONFIGUIATION. ..cetiiitiititiie ettt e e e e e 72.......
4.4.2 Read OPEralilD..........couuuuuuuuuuiaiiieeeeee et eee ettt e e e e e e e e e e e eeseeeabeaae 73....
A 4.3 1C INAEX MOM........ouiiiiiiiiii ettt e e 74....
4.5 Memory-Mapped Cache Configuration..............eueeeeeeiiiiiiiiiiiiiiiinnneeeeeeeeeeeeeeeeeeeeeeen d A
4.5.1 1C AAArESS AIMBL....uuueiiiiiiiiieeeeeee ettt eeeeeeeeeeeeeeeeee d B

Rev. 1.0, 08/98, page ii of viii
HITACHI

4.5.2 [C DaAta AT ettt ettt e et et e e e e e e e 75.....

4.5.3 OC AdAreSS AITAY....uuuiiaiieiiiiie ettt e ettt eeeeetin e e eeeesnin e e eeeesnnnneeees dd Du
4.5.4 OC DALA AL ...ttt ettt e e et e e e et e e e et e e ean 78....
4.6 SEOIE QUELBR. ... iiieiiiii et e et e et e et e et e e et e e eea s eeensaeenneeeenneeesnnaeesnnseesnneeeenneesd Dueeins
4.6.1 SQ CoNfIQUIAID.........coeeeeeeiiiiiiiiiiieiiiieiiiiiiies e e e e e e eeeeeeeeeeeeeeeee d Qe
4.6.2 SQ WIB...ccoiiiiiiiiiiiiiiie et e e ee A D
4.6.3 Transfer to EXternal MEMQL..........uuuiiiiiiiie e 79..
4.6.4 SQ PrOtECLION......uuii it e e e e e e e e eees 8l.......
SECHON S EXCEPLIMI. ..ceiitiiii et 83
5.1 OVEIVIBY .ttt e e ettt ettt e e e e e e e e e et e e e e e e n b 83......
5.1 FRALUIB.....ceevii it 83.....
5.1.2 Register CONfIQUIAMMD.ccuuuueaiiiiie ettt e e e e e e 83...
5.2 REQIStEr DESCIIPLIM. ...ttt e e e e e e e e e e e e e e e e eeeeernnneeeee e 84.....
5.3 Exception HaNdliNg FUNCHGIML........uuuiiiiiiiie e 85...
5.3.1 Exception HaNAliNG FD.........uvumiiii s 85...
5.3.2 Exception Handling Vector AddreSse.........oooovvvviiii 8b5.
5.4 Exception TYpPes and Priorbleuiieeeeeeeeeeeee e 86...
5.5 EXCEPLION IO/uueiiiiii e 88......
5.5.1 EXCEPLION FMY.....coiiiiiiiiiiiiiie et 8s8....
5.5.2 EXCepLion SOUICe ACCEPIEIAC.cceeiiiiiiiiiiiiiieiiiiititi e e e e e e 89..
5.5.3 Exception Requests and BL Bit...........cccoooviiiiiiiiiiiiiieeeeeeeieii 91.......
5.5.4 Return from Exception Hanhm.............ueiiiiiiieeeeee 91..
5.6 DesSCription Of EXCEPLIMN.oiiiiiiiiiiiiiiiieeie e e 92....
5.8, 1 RS ...ttt e e e e e e 92......
5.6.2 GeNeral EXCEPLIBIN....uuuuuiiiiiii et 97....
I SIS I [0 =] ¢ U PP PPP TP 111...
5.6.4 Priority Order with Multiple EXCEPLIGN..........uuuiiiiiieiieeee e 114
5.7 USAQE NOBR.....oiiiiiiiii et e e e 115....
Section 6 Floating-Point UNi..........oouuuiiiiiiiiiii e 117
8.1 OVEIVIBY ..ottt e e e e ettt ettt s et e e e e e e et e e e e e e s e s e bbb 117.....
6.2 DAta FOMMALS.coviiiiiiiiii et 117.......
6.2.1 Floating-PoiNt FOIMIa........ccuuuiiiiiiii e 117.
6.2.2 NON-NUMDEIS (NAN.....coiiiiiiiiiiii e 119..
6.2.3 Denormalized NUMDBY........cooiiiiiiiiiiiiii e 120.
8.3 REOISTESttt 121.....
6.3.1 Floating-Point REGISIRI.........ccoiiiiiiieeeee e 121.
6.3.2 Floating-Point Status/Control Register (FPPCR............uvviiviiiiiiiiiiiiiiiiinne 123
6.3.3 Floating-Point Communication Register (FPUL)..........cccccccviiiiiiiinnnn 124....
6.4 ROUNGIIY ...ttt ettt e ettt ettt r e e e e e e e e et et e e e s bbb bbb e e e e e e 124.....
6.5 Floating-Point EXCEPLIGL......ceuuiiiiiiiiiiiiieee ettt 125
6.6 Graphics SUPPOIt FUNCH®N........ccoiiieiiiiiiiiie et e e e e e e e e e e eeeeeeaneas 127

Rev. 1.0, 08/98, page iii of viii
HITACHI

6.6.1 Geometric Operation INSTrUCTBINccoiiiiiiiiie e 127

6.6.2 Pair Single-Precision Data Tramsfe..........ccooooiiiiiiiiieii e 128
Section 7 INSIrUCLION BE....coovviiiiii i 129.
7.1 EXECULION ENVIFONMENT.....iitiiiiiiiii ettt e e e e 129......
7.2 AAAreSSING MOAES.ccoeie et e et eeeaa e e eeeas 131...
7.3 INSTIUCTION SE.....cceiiiiiieeeie e e e et et e e e e e e e e e e 135....
Section 8 PiIPeliNI@l.......uuuiiiieiiiie e 149.
8.1 PIPRIING ... 149.....
8.2 Parallel-ExXecutability.............i i 156......
8.3 Execution Cycles and Pipeline Stadlin...........coouuuiiiiiiiiii e 160
Section 9 Power-Down MOEE..........uuuiiiiiieeiieeii e 177
9.1 OVEIVIBY ..ottt ettt e e e e e e e e et e ettt e e e e e e bbb s e e e e e e e e e e eeeeeeennnnnraeis 171.....

9.1.1 Types of POWEr-DOWN MOSE..........ccoviiiiiiiiiiiiiiiiiiiii 177

9.1.2 Register CONfIQUIAMD.ueieeiie ettt e ettt e et eeeebb e e e eeaean 178
9.2 REQISTEI DESCIIPLIL ...evttttitiiiiies ettt e e e e e e e e e e e e e e eene 179

9.2.1 Standby Control Register (STBICR.........ccooiiiiiiiiiiieee 179

9.2.2 Peripheral Module Pin High Impedance Cdntro............cccooeeeeeiieeeieeeeeeee 181

9.2.3 Peripheral Module Pin Pull-Up Cortro..........ccccccciiiiiiiiiiiiiiiieeee 181

9.2.4 Standby Control Register 2 (STBCR2).......ccoooviiiiii 182....
9.3 SIEEP IMOM. ...t 183....

9.3.1 Transition t0 SIEEP M@U...........uuuuiiiiiiiiiii e 183.

9.3.2 EXit from SIEEP MGOEL.......oiieiiiiiiiee e 183.
9.4 DEEP SIEEP MM........coiiiiiiiei e 183....

9.4.1 Transition to Deep Sleep MBA...........oooiiiiiiiiiiiiiii e 183

9.4.2 Exit from Deep Sleep M@d............uuuiiiiiiiiiiiiiie 183
9.5 StaNdDY MOEL.........ccooiiiii e 184....

9.5.1 Transition to Standby Med...............oooiii 184

9.5.2 Exit from Standby MaEL...........ccooiiiiiiiiiii 185.

9.5.3 ClOCK PAUSE FUNCHO.. .. .uuuiiiiiiiie e 185.
9.6 Module Standby FUNCHIO...........oooiiiiiiiiiiiiiie e 186..

9.6.1 Transition to Module Standby FUNECLIQ.............iiiiiiiiiiii e 186

9.6.2 Exit from Module Standby FUNGHIQ............uuuiiiii e 186
Section 10 InStruction DESCIPLSM.......uuuuiieieeeiieeeiiiiiee e 187
10.1 ADD ADD binary Arithmetic INSTIUCHID............cciiiuiiiiiieeiiiiiie e 200
10.2 ADDC ADD with Carry Arithmetic INStruCtioN.............uuiiiiiiiiiiiiii e 202..
10.3 ADDV ADD with (V flag) overflow check Arithmetic INStructio..............cccoeeevieeeens 203
10.4 AND AND logical Logical INStrUCHID.uvururiiiiiiiiiiiisree e 204
10.5 BF Branch if False Branch INStrUGTIO..............uuiiiiiiiiiieeeeeeeeeee e 206
10.6 BF/S Branch if False with delay Slot Branch Instructia...............cccccceiiiiininin 207

Rev. 1.0, 08/98, page iv of viii
HITACHI

10.7 BRA BRANCHh Branch INStrUCHION.cuiiiiiiecieee e 209....

10.8 BRAF BRANch Far Branch INStruaiQ...........coooeeeieiiiieiiiieiiiiiieeeeeeeeeeeeeeeeeeeeeeeie 210
10.9 BSR Branch to SubRoutine Branch INStruttio.................eueeeeiiiiiiiiiiiiiiiiiiiiiinnes 211
10.10 BSRF Branch to SubRoutine Far Branch Instractio...............coooeeiiiiieiniiiinnnne 212
10.11 BT Branch if True Branch INStrUQbIO.ueueieiiiiiieeeeee e 214
10.12 BT/S Branch if True with delay Slot Branch INStructio...............cccoovviiiiiiiiiiiim 215
10.13 CLRMAC CleaR MAC register System Control INStruttio...............ccceeeeeeeeeee... 217
10.14 CLRS CleaR S bit System Control INStruction.............coooeeevie 217.....
10.15 CLRT CleaR T bit System Control InStrugtio..............coooeeiiiiiiii 218
10.16 CMP/cond CoMPare conditionally Arithmetic INStruetio...............ooooeeeiiiiiiiinns 219
10.17 DIVOS DIVide (step 0) as Signed Arithmetic INStruction..............ccccecvvvvvvvnnnnnnn 222...
10.18 DIVOU DIVide (step 0) as Unsigned Arithmetic Instruetia...........cccccoeveeeeeienennn. 223
10.19 DIV1 DIVide 1 step ArithmetiC INSIFUCHI0...........uvuveiiiiiiiiiiiiiiiiiiiiiiiiiiiebeeevieieeee 224
10.20 DMULS.L Double-length MULtiply as Signed Arithmetic Instruntio.................... 228
10.21 DMULU.L Double-length MULtiply as Unsigned Arithmetic Instruatia................ 230
10.22 DT Decrement and Test Arithmetic INStrutia.............cceeviveeiiiiiiiiine e 232
10.23 EXTS EXTend as Signed Arithmetic INStruntiQ...............uvveviiiiiiiiiiiiiiiiiiiiiiiiiiin 233
10.24 EXTU EXTend as Unsigned Arithmetic INStruntio.uevveeveeeiiiieiiiiiiiiiinnnne 234
10.25 FABS Floating-point ABSolute value Floating-Point Instrurctia................cccoeeeee 235
10.26 FADD Floating-point ADD Floating-Point INStruatio...............cccccuvvvvvviviiiiiiininnn 236
10.27 FCMP Floating-point CoMPare Floating-Point INStructio.............ceeeviiveeiiinneennns 238
10.28 FCNVDS Floating-point CoNVert

........ Double to Single precision Floating-Point INnStruntio..................evvvvvviiviviiiiininnn. 241
10.29 FCNVSD Floating-point CoNVert

........ Single to Double precision Floating-Point Instruntio................oooeee i .243
10.30 FDIV Floating-point DIVide Floating-Point INStru@iQ.................eeevieeeeiiiiiiiinenin 245
10.31 FIPR Floating-point Inner Product Floating-Point Instractio.....................cc.vvvw 248
10.32 FLDIO Floating-point LoaD Immediate 0.0 Floating-Point Instractio............... 250
10.33 FLDI1 Floating-point LoaD Immediate 1.0 Floating-Point Instmctio............ 251
10.34 FLDS Floating-point LoaD to System register Floating-Point Instnuctio......251
10.35 FLOAT Floating-point convert from integer Floating-Point Instractio.............. 252
10.36 FMAC Floating-point Multiply and ACcumulate Floating- Point Instruction.......254.
10.37 FMOV Floating-point MOVe Floating-Point INStru@tio..............ccccciiiiinnennnnnnn 258
10.38 FMOV Floating-point MOVe extension Floating-Point Instruction................... 262..
10.39 FMUL Floating-point MULtiply Floating-Point Instructio...................ooooeieiiienne 265
10.40 FNEG Floating-point NEGate value Floating-Point Instractio...............cccccevvvvvwe 267
10.41 FRCHG FR-bit CHanGe Floating-Point INStrugtio..............cccvvvvvviviiiiee e 268
10.42 FSCHG Sz-bit CHanGe Floating-Point INStrutlio...........ccvvvvvvviiniiiieeeeeeeiiiine 269
10.43 FSQRT Floating-point SQuare RooT Floating-Point InStnuctio...............cccvvvveen 270
10.44 FSTS Floating-point STore System register Floating-Point Instructio.............. 273
10.45 FSUB Floating-point SUBtract Floating-Point INStruttio............ccccvvvveeniiieeeennnns 274
10.46 FTRC Floating-point TRuncate and Convert to integer

....... - Floating-Point INStrUCTI.ccceviiii e 2 LB

Rev. 1.0, 08/98, page Vv of viii
HITACHI

10.47 FTRV Floating-point TRansform Vector Floating-Point Instractio.................... 279

10.48 JMP JUMP Branch INSTrUQUIO.iieiiiiiiiiie ettt 282.
10.49 JSR Jump to SubRoutine Branch INStriCtiQ............coooiiiiiiiiiiieiiiii e 283
10.50 LDC LoaD to Control register System Control INStrumtio.............evvveveveeeeeeiinnnn. 285
10.51 LDS LoaD to FPU System register System Control InStructio........................ 290
10.52 LDS LoaD to System register System Control InStroctio.............uvveviieeeiiiiinnnnns 292
10.53 LDTLB LoaD PTEH/PTEL/PTEA to TLB System Control Instructia................ 294
10.54 MAC.L Multiply and ACcumulate Long Arithmetic Instruction...............cccceuvue.e 296.
10.55 MAC.W Multiply and ACcumulate Word Arithmetic Instructio........................ 299
10.56 MOV MOVe Data Data Transfer INStru@tia..............coooeeeveiiiiiiniiiiieiiiiiieee s 302
10.57 MOV MOVe constant value Data Transfer INStructio............c.uvveiiirieeiiiiiiiiiinnn 307
10.58 MOV MOVe global data Data Transfer INStrugtio................ccooeeviiiiiinneiiieeiiinnnns 310
10.59 MOV MOVe structure data Data Transfer INStruCLO.oovvvvieiiieeeeieiniiiii 313
10.60 MOVA MOVe effective address Data Transfer InStrunctio................ceeevvieeinnnnnns 316
10.61 MOVCA.L MOVe with Cache block Allocation Data Transfer Instrurctio........... 317
10.62 MOVT MOVe T bit Data Transfer INStruabiQ..............coovveeeiieiiineeeireeiiiiiee e eeeeeeea 318
10.63 MUL.L MULtiply Long Arithmetic INSTrUCtiO.uuumiiii s 319
10.64 MULS.W MULtiply as Signed Word Arithmetic INnStrugio...............ccceeeevieeeninnnnns 320
10.65 MULU.W MULtiply as Unsigned Word Arithmetic InStruabio................ccevvvvvvnenn 321
10.66 NEG NEGate Arithmetic INStrUCKQ..........uuuiiiieeiiiiiiie e 322
10.67 NEGC NEGate with Carry Arithmetic INStructio...............ccoeeiiie 323
10.68 NOP No OPeration System Control INStrUTLO.coeeeivieiiiiiiiie e 324
10.69 NOT NOT-logical complement Logical INStructio................ooooeevvviiiii, 325
10.70 OCBI Operand Cache Block Invalidate Data Transfer Instnuctio................... 326
10.71 OCBP Operand Cache Block Purge Data Transfer INStructi........................ 327
10.72 OCBWB Operand Cache Block Write Back Data Transfer Instnuctio............. 328
10.73 OR OR logical Logical INStIUCHQ.........ccceiiiiiiiiiiiiiiiieieeeeeeeeeeee e 329
10.74 PREF PREFetch data to cache Data Transfer InStructia............cccccceeeviieiviiennnn 331
10.75 ROTCL ROTate with Carry Left Shift INStruatiQ............ccoooeiiiiiiiiiiiiien 332
10.76 ROTCR ROTate with Carry Right Shift INStrugtio............cccccccvvvvviiiiiiiiiiieennnn. 333
10.77 ROTL ROTate Left Shift INStrUCHQ.......cccevveiii i 334
10.78 ROTR ROTate Right Shift InStruatia..............ccoooviiiiiiiiiiiiiiiiiiiii 335
10.79 RTE ReTurn from Exception System Control INStrtCLo.vvvvveveveeieiiiiiiiini 336
10.80 RTS ReTurn from Subroutine Branch INStruttio.........c.coevvviiiiiiviiveiiciieee e 338
10.81 SETS SET S bit System Control INStrUTLO........ccvvviiiiieeiiieiiiie e ee s 340
10.82 SETT SET T bit System Control INStruBti.............ueevieeiiiiiiiiieeeeeeeecie e eeeeeeeee 341
10.83 SHAD SHift Arithmetic Dynamically Shift INStructio..............cccoevvviiiiiiiieeereeeeii 342
10.84 SHAL SHift Arithmetic Left Shift INStruCtiD.............cccciiiii 344
10.85 SHAR SHift Arithmetic Right Shift INStruCtiQ.............cccovvvviiieiii e 345
10.86 SHLD SHift Logical Dynamically Shift INStructio.............c.oevvvvvviiiiiiiiiiieeeeeeeae 346
10.87 SHLL SHift Logical Left Shift INStrUCHID............ccoviiiiiiie e 348
10.88 SHLLnN n bits SHift Logical Left Shift InstructiQ...............ccccviiiiiii e 349
10.89 SHLR SHift Logical Right Shift INStruCtio..............covviiiiiiiii e 351

Rev. 1.0, 08/98, page vi of viii
HITACHI

10.90 SHLRn n bits SHift Logical Right Shift INStruatia................ueeiiiiiiiiiiiiiiee 352

10.91 SLEEP SLEEP System Control INStrutio...........ccoeieeiiiiiiiieeeeeeeeiiiie e 354
10.92 STC STore Control register System Control INStraCto...........ooevvviviiiiiieieeiieiiii 355
10.93 STS STore System register System Control INStrUCtio............ccooeeeeviiiiiiiiiiiem 360
10.94 STS STore from FPU System register System Control Instructio.................. 362
10.95 SUB SUBtract binary Arithmetic INStrualio...............ccccooviiii 364
10.96 SUBC SUBtract with Carry Arithmetic INStruatio................oooeeiii e 365
10.97 SUBV SUBtract with (V flag) underflow check Arithmetic Instruetio............... 366
10.98 SWAP SWAP register halves Data Transfer INStmICLO.............cccccvvvviiiiiiiiiiiiin 368
10.99 TAS Test And Set LOgiCal INSTIUGIIO..uvvvrrriiiiiiiieeee e 370
10.100 TRAPA TRAP Always System Control INStruatio..............ccevvvvviiiiiiiiiiiiinnnnnn.. 312
10.101 TST TeST logical Logical INStruabiQ.............oooeeeeeeiiiiiiiiiiieeeeeeeeeeeeeee 313
10.102 XOR eXclusive OR logical Logical INStruGtio..............uvvvevviiiiiiriiiiiiiiiiiiiiiiiiii 375
10.103 XTRCT eXTRact Data Transfer INStrugtio..............coooevviiiiiiiiiiiiieiiiiiiiiiiiiiiinnns 317
APPENIX A AdArESS LES...ciieiiiii e 379
Appendix B Instruction Prefetch Side EffeCt...........cccooeviiiiii, 385

Rev. 1.0, 08/98, page vii of viii
HITACHI

Rev. 1.0, 08/98, page viii of viii
HITACHI

Preface

The SH-4 (SH7750) has been developed as the top-end model in the SuperH™ RISC engine
family, featuring a 128-bit graphic engine for multimedia applications and 360 MIPS
performance.

The SH7750 CPU has a RISC type instruction set, and features upward-compatibility at the
object code level with SH-1, SH-2, SH-3, and SH-3E microcomputers.

In addition to single- and double-precision floating-point operation capability, the on-chip FPU
has a 128-bit graphic engine that enables 32-bit floating-point data to be processed 128 bits at a
time. It also supports # 4 array operations and inner product operations, enabling a

performance of 1.4 GFLOPS to be achieved.

A superscalar architecture is employed that enables simultaneous execution of two instructions
(including FPU instructions), providing performance of up to twice that of conventional
architectures at the same frequency.

SH7750 on-chip peripheral modules include oscillator circuits, an interrupt controller (INTC),
direct memory access controller (DMAC), timer unit (TMU), real-time clock (RTC), serial
communication interfaces (SCI, SCIF), and a user break controller (UBC), enabling a user
system to be configured with a minimum of components.

An 8-kbyte instruction cache and 16-kbyte data cache are also provided, and the on-chip
memory management unit (MMU) handles translation from the 4-Gbyte virtual address space to
the physical address space. The bus state controller (BSC) supporting external memory access
can handle a 64-bit synchronous DRAM 4-bank system and 64-bit data bus as well as ROM,
SRAM, DRAM, synchronous DRAM, and PCMCIA.

This programming manual gives details of the SH7750 instructions. For hardware details, refer
to the relevant hardware manual.

Related Manual:
SH7750 Hardware Manual (Document No. ADE-602-124)

Please consult your Hitachi sales representative for information on development environment
systems.

SuperH is a trademark of Hitachi, Ltd.

Rev. 1.0, 08/98, page 1 of 385
HITACHI

Rev. 1.0, 08/98, page 2 of 385
HITACHI

Section 1 Overview

1.1 SH7750 Features

The SH7750 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring
object code upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. It
includes an 8-kbyte instruction cache, a 16-kbyte operand cache with a choice of copy-back or
write-through mode, and an MMU (memory management unit) with a 64-entry fully-associative
unified TLB (translation lookaside buffer).

The SH7750 has an on-chip bus state controller (BSC) that allows direct connection to DRAM
and synchronous DRAM without external circuitry. Its 16-bit fixed-length instruction set enables
program code size to be reduced by almost 50% compared with 32-bit instructions.

The features of the SH7750 are summarized in table 1.1.

Rev. 1.0, 08/98, page 3 of 385
HITACHI

Table 1.1 SH7750 Features

Item Features

LSI « Operating frequency: 200 MHz
e Performance:
O 360 MIPS (200 MHz)
O 1.4 GFLOPS (200 MHz)
e Superscalar architecture: Parallel execution of two instructions
« Voltage: 1.8 V (internal), 3.3 V (I/O)
« Packages: 256-pin BGA, 208-pin QFP
e External buses
0 Separate 26-bit address and 64-bit data buses
0 External bus frequency of 1/2, 1/3, 1/4, 1/6, or 1/8 times internal bus frequency

CPU « Original Hitachi SH architecture
e 32-bit internal data bus
« General register file:
0 Sixteen 32-hit general registers (and eight 32-bit shadow registers)
O Seven 32-bit control registers
O Four 32-bit system registers
e RISC-type instruction set (upward-compatible with SH Series)
Fixed 16-bit instruction length for improved code efficiency
Load-store architecture
Delayed branch instructions
Conditional execution
C-based instruction set

« Superscalar architecture (providing simultaneous execution of two instructions)
including FPU

e Instruction execution time: Maximum 2 instructions/cycle

« Virtual address space: 4 Gbytes (448-Mbyte external memory space)
« Space identifier ASIDs: 8 bits, 256 virtual address spaces

e On-chip multiplier

« Five-stage pipeline

Oo0Oooog

Rev. 1.0, 08/98, page 4 of 385
HITACHI

Table 1.1 SH7750 Features (cont)

Item

Features

FPU

On-chip floating-point coprocessor

Supports single-precision (32 bits) and double-precision (64 bits)
Supports IEEE754-compliant data types and exceptions

Two rounding modes: Round to Nearest and Round to Zero

Handling of denormalized numbers: Truncation to zero or interrupt generation for
compliance with IEEE754

Floating-point registers: 32 bits x 16 words x 2 banks
(single-precision x 16 words or double-precision x 8 words) x 2 banks

32-bit CPU-FPU floating-point communication register (FPUL)

Supports FMAC (multiply-and-accumulate) instruction

Supports FDIV (divide) and FSQRT (square root) instructions

Supports FLDIO/FLDI1 (load constant 0/1) instructions

Instruction execution times

0O Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8 cycles
(double-precision)

0O Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles (double-
precision)

Note: FMAC is supported for single-precision only.

3-D graphics instructions (single-precision only):

0O 4-dimensional vector conversion and matrix operations (FTRV): 4 cycles (pitch),
7 cycles (latency)

O 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles (latency)

0 Five-stage pipeline

Clock pulse generator
(CPG)

Choice of main clock: 1/2, 1, 3, or 6 times EXTAL

Clock modes:

0 CPU frequency: 1, 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 200 MHz
0 Bus frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 100 MHz

O Peripheral frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 50
MHz

Power-down modes

0 Sleep mode

0 Standby mode

0 Module standby function
Single-channel watchdog timer

Memory management
unit (MMU)

4-Gbyte address space, 256 address space identifiers (8-bit ASIDs)
Single virtual mode and multiple virtual memory mode

Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte
4-entry fully-associative TLB for instructions

64-entry fully-associative TLB for instructions and operands

Supports software-controlled replacement and random-counter replacement
algorithm

TLB contents can be accessed directly by address mapping

Rev. 1.0, 08/98, page 5 of 385
HITACHI

Table 1.1 SH7750 Features (cont)

Item

Features

Cache memory

Instruction cache (IC)

O 8 kbytes, direct mapping

0 256 entries, 32-byte block length

O Normal mode (8-kbyte cache)

O Index mode

Operand cache (OC)

16 kbytes, direct mapping

512 entries, 32-byte block length

Normal mode (16-kbyte cache)

Index mode

RAM mode (8-kbyte cache + 8-kbyte RAM)

Choice of write method (copy-back or write-through)
Single-stage copy-back buffer, single-stage write-through buffer

Cache memory contents can be accessed directly by address mapping (usable as
on-chip memory)

OooooQooQg

Store queue (32 bytes X 2 entries)

Interrupt controller
(INTC)

Five independent external interrupts (NMI, IRL3 to IRLO)
15-level signed external interrupts: IRL3 to IRLO
On-chip peripheral module interrupts: Priority level can be set for each module

User break
controller (UBC)

Supports debugging by means of user break interrupts

Two break channels

Address, data value, access type, and data size can all be set as break conditions
Supports sequential break function

Bus state
controller (BSC)

Supports external memory access
0 64/32/16/8-bit external data bus

External memory space divided into seven areas, each of up to 64 Mbytes, with the
following parameters settable for each area:

0 Bus size (8, 16, 32, or 64 bits)

O Number of wait cycles (hardware wait function also supported)

0 Direct connection of DRAM, synchronous DRAM, and burst ROM possible by
setting space type

0 Supports fast page mode and DRAM EDO

0 Supports PCMCIA interface

O Chip select signals (CS0 to CS6) output for relevant areas

DRAM/synchronous DRAM refresh functions

0 Programmable refresh interval

0 Supports CAS-before-RAS refresh mode and self-refresh mode

DRAM/synchronous DRAM burst access function

Big endian or little endian mode can be set

Rev. 1.0, 08/98, page 6 of 385

HITACHI

Item Features

Direct memory access « 4-channel physical address DMA controller
controller (DMAC) Transfer data size: 8, 16, 32, or 64 bits, or 32 bytes
* Address modes:

0 1-bus-cycle single address mode

0 2-bus-cycle dual address mode
« Transfer requests: External, on-chip module, or auto-requests
« Bus modes: Cycle-steal or burst mode

e Supports on-demand data transfer

Timer unit (TMU) e 3-channel auto-reload 32-bit timer
* Input capture function

« Choice of seven counter input clocks

Realtime clock (RTC) « On-chip clock and calendar functions

e Built-in 32 kHz crystal oscillator with maximum 1/256 second resolution (cycle
interrupts)

Serial communication « Two full-duplex communication channels (SCI, SCIF)
interface e Channel 1 (SCI):
(SCl, SCIF)
O Choice of asynchronous mode or synchronous mode
0 Supports smart card interface
e Channel 2 (SCIF):
0 Supports asynchronous mode

0 Separate 16-byte FIFOs provided for transmitter and receiver

Packages e 256-pin BGA, 208-pin QFP

Rev. 1.0, 08/98, page 7 of 385
HITACHI

1.2 Block Diagram

Figure 1.1 shows an internal block diagram of the SH7750.

CPU uBC FPU
al ()
iEE R -
SlEllEl [3][E Cower 32bidaia | || [3 |&
EHEl R 0.09) ower-|aa__%.c
cl = [« =| |2 9| |=
HIEE EEIE gl
8 (=B 2|2 5[0
3z RLZ 38
Sl|E & o[|&[Lower 32-bit data 3|5
SIE
™,
| cache O cache
@ kB) ITLB CCN UTLB (16 kB)
—H 8 |s||<
CPG T 3| 8| |8
- x|z
2] [
— <)
K N
INTC 2]
oe
8 N
T
© g 1
s KE[3 BSC [>fpmac
A
(SCIF) 23 —]
[=% (0]
Ol |
2| |®
K5 [®
RTC © ()
— < S| | <
o LI ol 12| |2
) ol || |°
— H* 3| 5|3
T™U — < 3|13
(-
External
bus interface
26-bit .
address 64-bit
data
CCN: Cache and TLB controller UTLB: Unified TLB (translation lookaside buffer)
BSC: Bus state controller RTC: Realtime clock
CPG: Clock pulse generator SCl: Serial communication interface
DMAC: Direct memory access controller SCIF: Serial communication interface with FIFO
FPU: Floating-point unit TMU: Timer unit
INTC: Interrupt controller UBC: User break controller

ITLB: Instruction TLB (translation lookaside buffer)

Figure 1.1 Block Diagram of SH7750 Functions

Rev. 1.0, 08/98, page 8 of 385
HITACHI

Section 2 Programming Model

2.1 Data Formats

The data formats handled by the SH7750 are shown in figure 2.1.

7 0
Byte (8 bits)
15 0
Word (16 bits)
31 0
Longword (32 bits)
3130 22 0
Single-precision floating-point (32 bits) s| exp fraction
63 62 51 0
Double-precision floating-point (64 bits) s| exp fraction

Figure 2.1 Data Formats
2.2 Register Configuration

221 Privileged Mode and Banks

Processor ModesThe SH7750 has two processor modes, user mode and privileged mode. The
SH7750 normally operates in user mode, and switches to privileged mode when an exception
occurs or an interrupt is accepted. There are four kinds of registers—general registers, system
registers, control registers, and floating-point registers—and the registers that can be accessed
differ in the two processor modes.

General Registers:There are 16 general registers, designated RO to R15. General registers RO
to R7 are banked registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load
control register (LDC) and store control register (STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1
general registers RO_BANK1 to R7_BANK1 and non-banked general registers R8 to R15 can be

Rev. 1.0, 08/98, page 9 of 385
HITACHI

accessed as general registers RO to R15. In this case, the eight registers comprising bank 0
general registers RO_BANKO to R7_BANKO are accessed by the LDC/STC instructions. When
the RB bit is O (that is, when bank 0 is selected), the 16 registers comprising bank 0 general
registers RO_BANKO to R7_BANKO and non-banked general registers R8 to R15 can be
accessed as general registers RO to R15. In this case, the eight registers comprising bank 1
general registers RO_BANK1 to R7_BANK1 are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers RO_BANKO to R7_BANKO

and non-banked general registers R8 to R15 can be accessed as general registers RO to R15. The
eight registers comprising bank 1 general registers RO_BANK1 to R7_BANK1 cannot be
accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register
(SR), which can be accessed in both processor modes, and the saved status register (SSR), saved
program counter (SPC), vector base register (VBR), saved general register 15 (SGR), and debug
base register (DBR), which can only be accessed in privileged mode. Some bits of the status
register (such as the RB bit) can only be accessed in privileged mode.

System RegistersSystem registers comprise the multiply-and-accumulate registers
(MACH/MACL), the procedure register (PR), the program counter (PC), the floating-point
status/control register (FPSCR), and the floating-point communication register (FPUL). Access
to these registers does not depend on the processor mode.

Floating-Point Registers:There are thirty-two floating-point registers, FRO—FR15 and XF0—
XF15. FRO-FR15 and XFO—XF15 can be assigned to either of two banks (FPRO_BANKO-
FPR15 BANKO or FPRO_BANK1-FPR15 BANK1).

FRO-FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-
point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XFO—

XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register matrix
XMTRX.

Register values after a reset are shown in table 2.1.

Rev. 1.0, 08/98, page 10 of 385
HITACHI

Table 2.1 Initial Register Values

Type Registers Initial Value*

General registers R0O_BANKO-R7_BANKO, Undefined
RO_BANK1-R7_BANK1,

R8-R15
Control registers SR MD bit =1, RB bit =1, BL bit=1, FD bit =0,
13-10 = 1111 (H'F), reserved bits = 0, others
undefined
GBR, SSR, SPC, SGR, Undefined
DBR
VBR H'00000000
System registers MACH, MACL, PR, FPUL Undefined
PC H'A0000000
FPSCR H'00040001
Floating-point FRO-FR15, XFO-XF15 Undefined

registers

Note: * Initialized by a power-on reset and manual reset.

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (MD)
in the status register.

Rev. 1.0, 08/98, page 11 of 385
HITACHI

31 31 31 0
RO_BANKO*1:#2 RO_BANK1*1+3 RO_BANKO*1*4
R1_BANKO0*2 R1_BANK1*3 R1_BANKO**
R2_BANKO0*2 R2_BANK1*3 R2_BANKO*
R3_BANKO0*2 R3_BANK1*3 R3_BANKO**
R4_BANKO0*2 R4_BANK1*3 R4_BANKO**
R5_BANKO0*2 R5_BANK1*3 R5_BANKO**
R6_BANKO0*2 R6_BANK1*3 R6_BANKO**
R7_BANKO0*2 R7_BANK1*3 R7_BANKO**

RS RS RS
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
SR SR SR
SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
PC PC PC
SPC SPC
SGR SGR |
DBR DBR |
RO_BANKO*1*4 RO_BANK1*1*3
R1_BANKO** R1_BANK1*3
R2_BANKO** R2_BANK1*3
R3_BANKO** R3_BANK1*3
R4_BANKO* R4_BANK1*3
R5_BANKO** R5_BANK1*3
R6_BANKO** R6_BANK1*3
R7_BANKO** R7_BANK1*3

(a) Register configuration
in user mode

(b) Register configuration in
privileged mode (RB = 1)

(c) Register configuration in
privileged mode (RB = 0)

Notes: 1. The RO register is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.

2. Banked registers
3. Banked registers

Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers

Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.

Figure 2.2 CPU Register Configuration in Each Processor Mode

Rev. 1.0, 08/98, page 12 of 385

HITACHI

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The
SH7750 has twenty-four 32-bit general registers (RO_BANKO-R7_BANKO, RO_BANK1-
R7_BANK1, and R8-R15). However, only 16 of these can be accessed as general registers RO—
R15 in one processor mode. The SH7750 has two processor modes, user mode and privileged
mode, in which RO-R7 are assigned as shown below.

* RO_BANKO-R7_BANKO
In user mode (SR.MD = 0), RO—R7 are always assigned to RO_BANKO-R7_BANKO.

In privileged mode (SR.MD = 1), RO-R7 are assigned to RO_BANKO-R7_BANKO only
when SR.RB = 0.

* RO_BANK1-R7_BANK1
In user mode, RO_BANK1-R7_BANK1 cannot be accessed.
In privileged mode, RO—R7 are assigned to RO_BANK1-R7_BANK1 only when SR.RB = 1.

Rev. 1.0, 08/98, page 13 of 385
HITACHI

SR.MD =0 or
(SR.MD =1, SR.RB =0) (SR.MD =1, SR.RB=1)
RO RO_BANKO RO_BANKO
R1 R1_BANKO R1_BANKO
R2 R2_BANKO R2_BANKO
R3 R3_BANKO R3_BANKO
R4 R4 _BANKO R4_BANKO
R5 R5_BANKO R5_BANKO
R6 R6_BANKO R6_BANKO
R7 R7_BANKO R7_BANKO
RO_BANK1 RO_BANK1 RO
R1_BANK1 R1_BANK1 R1
R2_BANK1 R2_BANK1 R2
R3_BANK1 R3_BANK1 R3
R4 _BANK1 R4_BANK1 R4
R5_BANK1 R5_BANK1 R5
R6_BANK1 R6_BANK1 R6
R7_BANK1 R7_BANK1 R7
RS R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15

Figure 2.3 General Registers

Programming Note: As the user’s RO—R7 are assigned to RO_BANKO-R7_BANKO, and after
an exception or interrupt RO—R7 are assigned to RO_BANK1-R7_BANK1, it is not necessary for
the interrupt handler to save and restore the user's RO—R7 (RO_BANKO-R7_BANKaO).

After a reset, the values of RO_BANKO-R7_BANKO, RO_BANK1-R7_BANK1, and R8-R15
are undefined.

Rev. 1.0, 08/98, page 14 of 385
HITACHI

2.2.3 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registers,
divided into two banks (FPRO_BANKO-FPR15_BANKO and FPRO_BANK1-FPR15 BANK1).
These 32 registers are referenced as FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XFO—XF15,
XDO0/2/4/6/8/10/12/14, or XMTRX. The correspondence between FPRn_BANKi and the
reference name is determined by the FR bit in FPSCR (see figure 2.4).

* Floating-point registers, FPRn_BANKIi (32 registers)
FPRO_BANKO, FPR1_BANKO, FPR2_BANKO, FPR3_BANKO, FPR4_BANKO,
FPR5_BANKO, FPR6_BANKO, FPR7_BANKO, FPR8_BANKO, FPR9_BANKO,
FPR10_BANKO, FPR11_BANKO, FPR12_BANKO, FPR13_BANKO, FPR14_BANKO,
FPR15_BANKO
FPRO_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4_BANK1,
FPR5_BANK1, FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1,
FPR10_BANK1, FPR11_BANK1, FPR12_BANK1, FPR13_BANK1, FPR14 BANK1,
FPR15 BANK1

« Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 are assigned to FPRO_BANKO-FPR15_BANKO.
When FPSCR.FR = 1, FRO-FR15 are assigned to FPRO_BANK1-FPR15 BANKI.

« Double-precision floating-point registers or single-precision floating-point register pairs, DRi
(8 reqisters): A DR register comprises two FR registers.
DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

« Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers
FVO = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

« Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO—XF15 are assigned to FPRO_BANK1-FPR15_ BANK1.
When FPSCR.FR = 1, XFO-XF15 are assigned to FPRO_BANKO-FPR15_BANKO.

« Single-precision floating-point extended register pairs, XDi (8 registers): An XD register
comprises two XF registers
XDO0 = {XFO0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14,
XF15}

Rev. 1.0, 08/98, page 15 of 385
HITACHI

¢ Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = [XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

FPSCR.FR =0 FPSCR.FR =1
FVO DRO FRO FPRO_BANKO XFO XDO XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

FV4 DR4 FR4 FPR4_BANKO XF4 XD4
FR5 FPR5_BANKO XE5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FVv8 DR8 FR8 FPR8_BANKO XFE8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14_BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FEV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XF7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FRS DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DRI10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14 BANK1 FR14 DR14
XF15 FPR15 BANK1 FR15

Figure 2.4 Floating-Point Registers

Rev. 1.0, 08/98, page 16 of 385
HITACHI

Programming Note: After a reset, the values of FPRO_BANKO-FPR15 BANKO and
FPRO_BANK1-FPR15 BANK1 are undefined.

2.2.4 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000
00XX 1111 00XX)

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0
|—|MD|RB|BL| — |FD| — |M|Q| IMASK | — |S|T|
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

X: Undefined

 MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be
accessed)
MD = 1: Privileged mode

» RB: General register bank specifier in privileged mode (set to 1 by a reset, exception, or
interrupt)
RB = 0: RO_BANKO-R7_BANKO are accessed as general registers RO—R7. (RO_BANK1-
R7_BANK1 can be accessed using LDC/STC RO_BANK-R7_BANK instructions.)

RB = 1: RO_BANK1-R7_BANKI1 are accessed as general registers RO—R7. (RO_BANKO-
R7_BANKO can be accessed using LDC/STC RO_BANK-R7_BANK instructions.)

» BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If a general exception other than a user break occurs
while BL = 1, the processor switches to the reset state.

» FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU
instruction is in a delay slot, a slot FPU disable exception is generated. (FPU instructions:
H'F*** instructions, LDC(.L)/STS(.L) instructions for FPUL/FPSCR)

¢ M, Q: Used by the DIVOS, DIVOU, and DIV1 instructions.

» IMASK: Interrupt mask level

External interrupts of a lower level than IMASK are masked.
S: Specifies a saturation operation for a MAC instruction.

T: True/false condition or carry/borrow bit

Rev. 1.0, 08/98, page 17 of 385
HITACHI

Saved status register, SSR (32 bits, privilege protection, initial value undefined)he current
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undefined)he
address of an instruction at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undefined)GBR is referenced as the base
address in a GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000¥BR
is referenced as the branch destination base address in the event of an exception or interrupt. For
details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined)he
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undefinedyVhen the
user break debug function is enabled (BRCR.UBDE = 1), DBR is referenced as the user break
handler branch destination address instead of VBR.

225 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)

MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instruction
or MUL operation result.

Procedure register, PR (32 bits, initial value undefined)The return address is stored in PR in
a subroutine call using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutine
return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000)PC indicates the instruction fetch
address.

Rev. 1.0, 08/98, page 18 of 385
HITACHI

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause | Enable Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank

FR = 0: FPRO_BANKO-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1—
FPR15 BANK1 are assigned to XFO—XF15.

FR =1: FPRO_BANKO-FPR15_BANKO are assigned to XFO—XF15; FPRO_BANK1-
FPR15 BANK1 are assigned to FRO-FR15.

» SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).
* PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the result of
instructions for which double-precision is not supported is undefined).

Mode setting [SZ = 1, PR = 1] is reserved. FPU operation results are undefined in this mode.
« DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z2) (O)) 0]
Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

When an FPU operation instruction is executed, the cause field is cleared to zero first. When
the next FPU exception is requested, the corresponding bits in the cause field and flag field
are set to 1. The flag field holds the status of the exception generated after the field was last
cleared.

Rev. 1.0, 08/98, page 19 of 385
HITACHI

* RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

* Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined):Data
transfer between FPU registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for
double-precision floating-point load or store operations. In little endian mode, two 32-bit data
size moves must be executed, with SZ = 0, to load or store a double-precision floating-point
number.

2.3 Memory-Mapped Registers

Appendix A shows the control registers mapped to memory. The control registers are double-
mapped to the following two memory areas. All registers have two addresses.

H'1F00 0000-H'1FFF FFFF
H'FF00 0000-H'FFFF FFFF

These two areas are used as follows.

« H'1F00 0000-H'1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since external
memory is defined as a 29-bit address space in the SH7750 architecture, the TLB’s physical
page numbers do not cover a 32-bit address space. In address translation, the page numbers
of this area can be set in the corresponding field of the TLB by accessing a memory-mapped
register. The page numbers of this area should be used as the actual page numbers set in the
TLB. When address translation is not performed, the operation of accesses to this area is
undefined.

e H'FFO0 0000-H'FFFF FFFF
This area must be accessed without address translation.
Do not access undefined locations in either area The operation of an access to an undefined

location is undefined. Also, memory-mapped registers must be accessed using a fixed data
size. The operation of an access using an invalid data size is undefined.

Programming Note: Access to area H'FFO0 0000—H'FFFF FFFF in user mode will cause an
address error. Memory-mapped registers can be referenced in user mode by means of access that
involves address translation.

Rev. 1.0, 08/98, page 20 of 385
HITACHI

2.4 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8
bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
| Longword

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed
in 8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits in
length is sign-extended before being loaded into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit:
address 2n), and a longword operand starting from a longword boundary (even address of a 4-
byte unit: address 4n). An address error will result if this rule is not observed. A byte operand
can be accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be
set with the MD5 external pin in a power-on reset. Big endian is selected when the MD5 pin is
low, and little endian when high. The endian cannot be changed dynamically. Bit positions are
numbered left to right from most-significant to least-significant. Thus, in a 32-bit longword, the
leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0, is the least significant
bit.

The data format in memory is shown in figure 2.5. In little endian mode, data written as byte-
size (8 bits) should be read as byte size, and data written as word-size (16 bits) should be read as
word size.

A A+1 A+2 A+3 A+11 A+10 A+9 A+8
31 23 15 7 0 31 23 15 7 0
7 0|7 of7 of7 0 7 of7 0|7 0[7 0
Address A | Byte 0| Byte 1| Byte 2 | Byte 3 Byte 3|Byte 2| Byte 1 | Byte 0| Address A + 8
15 0|15 0 15 0[15 0
Address A + 4 Word 0 Word 1 Word 1 Word 0 Address A + 4
31 0 31 0
Address A + 8 Longword Longword Address A
Big endian Little endian

Figure 2.5 Data Formats In Memory

Rev. 1.0, 08/98, page 21 of 385
HITACHI

Note: The SH7750 does not support endian conversion for the 64-bit data format. Therefore, if
double-precision floating-point format (64-bit) access is performed in little endian mode,
the upper and lower 32 bits will be reversed.

2.6 Processor States

The SH7750 has five processor states: the reset state, exception-handling state, bus-released
state, program execution state, and power-down state.

Reset Statein this state the CPU is reset. The reset state is entered wHRBSBE®& pin goes
low. The CPU enters the power-on reset state iMRESET pin is high, and the manual reset
state if theMRESET pin is low. For more information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and registers of
on-chip peripheral modules other than the bus state controller (BSC) are initialized. Since the
bus state controller (BSC) is not initialized in the manual reset state, refreshing operations
continue. Refer to the register configurations in the relevant sections for further details.

Exception-Handling State: This is a transient state during which the CPU’s processor state flow
is altered by a reset, general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the user-
coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents are saved in
the saved program counter (SPC), the status register (SR) contents are saved in the saved status
register (SSR), and the R15 contents are saved in saved general register 15 (SGR). The CPU
branches to the start address of the user-coded exception service routine found from the sum of
the contents of the vector base address and the vector offset. See section 5, Exceptions, for more
information on resets, general exceptions, and interrupts.

Program Execution State:In this state the CPU executes program instructions in sequence.

Power-Down State:In the power-down state, CPU operation halts and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two
modes in the power-down state: sleep mode and standby mode. For details, see section 9, Power-
Down Modes.

Bus-Released Statdn this state the CPU has released the bus to a device that requested it.

Transitions between the states are shown in figure 2.6.

Rev. 1.0, 08/98, page 22 of 385
HITACHI

From any state when From any state when
RESET =0 and MRESET =1 RESET = 0 and MRESET =0

Power-on reset state
Reset state

RESET =1, RESET =1,
MRESET =1 MRESET =0

A

Manual reset state
RESET =0,
MRESET =1

Exception-handling state

Bus request
q Bus request

clearance

Interrupt Interrupt

Exception End of exception
interrupt transition
processing

Bus-released state _

N \

Bus request
clearance

request

Bus request
clearance

Bus request

Program execution state

SLEEP instruction
with STBY bit set

with STBY bit
cleared

Sleep mode Standby mode

Power-down state

Figure 2.6 Processor State Transitions

2.7 Processor Modes

There are two processor modes: user mode and privileged mode. The processor mode is
determined by the processor mode bit (MD) in the status register (SR). User mode is selected
when the MD bit is cleared to 0, and privileged mode when the MD bit is set to 1. When the
reset state or exception state is entered, the MD bit is set to 1. When exception handling ends,
the MD bit is cleared to 0 and user mode is entered. There are certain registers and bits which
can only be accessed in privileged mode.

Rev. 1.0, 08/98, page 23 of 385
HITACHI

Rev. 1.0, 08/98, page 24 of 385
HITACHI

Section 3 Memory Management Unit (MMU)

3.1 Overview

3.1.1 Features

The SH7750 can handle 29-bit external memory space from an 8-bit address space identifier and
32-bit logical (virtual) address space. Address translation from virtual address to physical
address is performed using the memory management unit (MMU) built into the SH7750. The
MMU performs high-speed address translation by caching user-created address translation table
information in an address translation buffer (translation lookaside buffer: TLB). The SH7750 has
four instruction TLB (ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are

stored in the ITLB by hardware. A paging system is used for address translation, with support for
four page sizes (1, 4, and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space
access right and implement storage protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in
figure 3.1, when a process is smaller in size than the physical memory, the entire process can be
mapped onto physical memory, but if the process increases in size to the point where it does not
fit into physical memory, it becomes necessary to divide the process into smaller parts, and map
the parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this
mapping onto physical memory executed consciously by the process itself imposes a heavy
burden on the process. The virtual memory system was devised as a means of handling all
physical memory mapping to reduce this burden ((2)). With a virtual memory system, the size of
the available virtual memory is much larger than the actual physical memory, and processes are
mapped onto this virtual memory. Thus processes only have to consider their operation in virtual
memory, and mapping from virtual memory to physical memory is handled by the MMU. The
MMU is normally managed by the OS, and physical memory switching is carried out so as to
enable the virtual memory required by a task to be mapped smoothly onto physical memory.
Physical memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time

sharing system (TSS) that allows a number of processes to run simultaneously ((3)). Running a
number of processes in a TSS did not increase efficiency since each process had to take account
of physical memory mapping. Efficiency is improved and the load on each process reduced by
the use of a virtual memory system ((4)). In this system, virtual memory is allocated to each
process. The task of the MMU is to map a number of virtual memory areas onto physical

memory in an efficient manner. It is also provided with memory protection functions to prevent

a process from inadvertently accessing another process’s physical memory.

Rev. 1.0, 08/98, page 25 of 385
HITACHI

When address translation from virtual memory to physical memory is performed using the
MMU, it may happen that the translation information has not been recorded in the MMU, or the
virtual memory of a different process is accessed by mistake. In such cases, the MMU will
generate an exception, change the physical memory mapping, and record the new address
translation information.

Although the functions of the MMU could be implemented by software alone, having address
translation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer:

TLB) is provided in hardware, and frequently used address translation information is placed
here. The TLB can be described as a cache for address translation information. However, unlike
a cache, if address translation fails—that is, if an exception occurs—switching of the address
translation information is normally performed by software. Thus memory management can be
performed in a flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to
physical memory: the paging method, using fixed-length address translation, and the segment
method, using variable-length address translation. With the paging method, the unit of
translation is a fixed-size address space called a page (usually from 1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH7750 is referred to
as virtual address space, and the address space in physical memory as physical address space.

Rev. 1.0, 08/98, page 26 of 385
HITACHI

é Virtual h
p N P 1 memory MMU Physical
e SR Physical rocess 1 _ memor
Physical Process 1 meymory Y
memory
Process 1
\ -
N
e A e - A
o 1 Physical b 1 Virtual
rocess memory rocess memory
“MMU Physical
' memory
Process 2 Process 2 i
Process 3, Process 3 B
3 4
L (3)) q 4)

Figure 3.1 Role of the MMU

Rev. 1.0, 08/98, page 27 of 385

HITACHI

3.1.3 Register Configuration

The MMU registers are shown in table 3.1.

Table 3.1 MMU Registers

Abbrevia- Initial P4 Area 7 Access
Name tion R/W Value** Address*? Address*® Size
Page table entry high PTEH R/W Undefined H'FF00 0000 H'1F00 0000 32
register
Page table entry low PTEL R/W Undefined H'FFO0 0004 H'1F00 0004 32
register
Page table entry PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32
assistance register
Translation table base TTB R/W Undefined H'FFO0 0008 H'1FO0 0008 32
register
TLB exception address TEA R/W Undefined H'FFO0 000C H'1F00 000C 32
register
MMU control register MMUCR R/W H'0000 0000 H'FFO0 0010 H'1F00 0010 32

Notes: 1. The initial value is the value after a power-on reset or manual reset.

2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits

of the address are ignored.

3.14 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

Rev. 1.0, 08/98, page 28 of 385

HITACHI

3.2 Register Descriptions

There are six MMU-related registers.

1. PTEH

31 10 9 8 7 0

VPN —|— ASID

2. PTEL

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

—|—|— PPN — |V |SZ| PR [SZ|C |D BHWT
3. PTEA

31 4 3 2 0

TC| SA

4. TTB

31 0

TTB

5. TEA

31

Virtual address at which MMU exception or address error occurred

6. MMUCR

31 26 25 24 23 18 17 16 15 109 8 7 6 5 4 3 2 1 0

LRUI —|— URB —|— URC SV|—|—|—|—|—|TI |— AT
|
SQMD

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

Figure 3.2 MMU-Related Registers

Rev. 1.0, 08/98, page 29 of 385
HITACHI

1. Page table entry high register (PTEH)Longword access to PTEH can be performed from
H'FF00 0000 in the P4 area and H'1F00 0000 in area 7. PTEH consists of the virtual page
number (VPN) and address space identifier (ASID). When an MMU exception or address error
exception occurs, the VPN of the virtual address at which the exception occurred is set in the
VPN field by hardware. VPN varies according to the page size, but the VPN set by hardware
when an exception occurs consists of the upper 22 bits of the virtual address which caused the
exception. VPN setting can also be carried out by software. The number of the currently
executing process is set in the ASID field by software. ASID is not updated by hardware. VPN
and ASID are recorded in the UTLB by means of the LDLTB instruction.

2. Page table entry low register (PTEL)Longword access to PTEL can be performed from
H'FFO00 0004 in the P4 area and H'1F00 0004 in area 7. PTEL is used to hold the physical page
number and page management information to be recorded in the UTLB by means of the LDTLB
instruction. The contents of this register are not changed unless a software directive is issued.

3. Page table entry assistance register (PTEA)ongword access to PTEA can be performed
from H'FFO0 0034 in the P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance
bits for PCMCIA access to the UTLB by means of the LDTLB instruction. The contents of this
register are not changed unless a software directive is issued.

4. Translation table base register (TTB)Longword access to TTB can be performed from
H'FFO0 0008 in the P4 area and H'1F00 0008 in area 7. TTB is used, for example, to hold the
base address of the currently used page table. The contents of TTB are not changed unless a
software directive is issued. This register can be freely used by software.

5. TLB exception address register (TEA)Longword access to TEA can be performed from
H'FFO0 000C in the P4 area and H'1F00 000C in area 7. After an MMU exception or address
error exception occurs, the virtual address at which the exception occurred is set in TEA by
hardware. The contents of this register can be changed by software.

6. MMU control register (MMUCR): MMUCR contains the following bits:
LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

SQMD: Store queue mode bit

SV: Single virtual mode bit

TI: TLB invalidate

AT: Address translation bit

Longword access to MMUCR can be performed from H'FFO0 0010 in the P4 area and H'1F00
0010 in area 7. The individual bits perform MMU settings as shown below. Therefore, MMUCR
rewriting should be performed by a program in the P1 or P2 area. After MMUCR is updated, an
instruction that performs data access to the PO, P3, UQ, or store queue area should be located at
least four instructions after the MMUCR update instruction. Also, a branch instruction to the PO,

Rev. 1.0, 08/98, page 30 of 385
HITACHI

P3, or UO area should be located at least eight instructions after the MMUCR update instruction.
MMUCR contents can be changed by software. The LRUI bits and URC bits may also be
updated by hardware.

LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replaced
in the event of an ITLB miss. The entry to be purged from the ITLB can be confirmed using
the LRUI bits. LRUI is updated by means of the algorithm shown below. A dash in this table
means that updating is not performed.

LRUI
[5] [4] [3] (2] [1] [0]
When ITLB entry 0 is used 0 0 0 — — —
When ITLB entry 1 is used 1 — — 0 0 —
When ITLB entry 2 is used — 1 — 1 — 0
When ITLB entry 3 is used — — 1 — 1

Other than the above — — — - — _

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by
an ITLB miss. An asterisk in this table means “don’t care”.

LRUI
[5] [4] [3] 2] [1] [0]
ITLB entry O is updated 1 1 1 * * *
ITLB entry 1 is updated 0 * * 1 1 *
ITLB entry 2 is updated * 0 * 0 *
ITLB entry 3 is updated * * 0 * 0 0

Other than the above Setting prohibited

Ensure that values for which “Setting prohibited” is indicated in the above table are not set at
the discretion of software. After a power-on or manual reset the LRUI bits are initialized to
0, and therefore a prohibited setting is never made by a hardware update.

URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed.
Valid only when URB > 0.

URC: Random counter for indicating the UTLB entry for which replacement is to be
performed with an LDTB instruction. URC is incremented each time the UTLB is accessed.
When URB > 0, URC is reset to 0 when the condition URC = URB occurs. Also note that, if
a value is written to URC by software which results in the condition URC > URB,
incrementing is first performed in excess of URB until URC = H'3F. URC is not incremented
by an LDTLB instruction.

Rev. 1.0, 08/98, page 31 of 385
HITACHI

» SQMD: Store queue mode bit. Specifies the right of access to the store queues.
0: User/privileged access possible
1: Privileged access possible (address error exception in case of user access)
» SV: Bit that switches between single virtual memory mode and multiple virtual memory
mode.
0: Multiple virtual memory mode
1: Single virtual memory mode
When this bit is changed, ensure that 1 is also written to the Tl bit.
TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always
returns O when read.
« AT: Specifies MMU enabling or disabling.
0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does
not use the MMU, therefore, the AT bit should be cleared to 0.

3.3 Memory Space

3.3.1 Physical Memory Space

The SH7750 supports a 32-bit physical memory space, and can access a 4-Gbyte address space.
When the MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as shown
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memory
space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Ghyte space from the PO area to the P4 area
can be accessed. In user mode, a 2-Gbyte space in the UO area can be accessed. Accessing the
P1 to P4 areas (except the store queue area) in user mode will cause an address error.

Rev. 1.0, 08/98, page 32 of 385
HITACHI

External
memory space
H'0000 0000 T aAreao | H'0000 0000
Area 1
Area 2
Area 3
PO area Area 4 U0 area
Cacheable Area 5 Cacheable
Area 6
Area 7
H'8000 0000 H'8000 0000
P1 area :
Cacheable
H'A000 0000 P2 area
Non-cacheable | ' "
, ! Address error
H'C000 0000 P3 area ;
Cacheable H
H'E000 0000 H'E000 0000
P4 arhea ! Store queue area H'E400 0000
H'EEFE FEEE Non-cacheable Address error H'EFEFE FEEF
Privileged mode User mode

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)

PO, P1, P3, UO AreasThe PO, P1, P3, and UO areas can be accessed using the cache. Whether
or not the cache is used is determined by the cache control register (CCR). When the cache is
used, with the exception of the P1 area, switching between the copy-back method and the write-
through method for write accesses is specified by the CCR.WT bit. For the P1 area, switching is
specified by the CCR.CB bit. Zeroizing the upper 3 bits of an address in these areas gives the
corresponding external memory space address. However, since area 7 in the external memory
space is a reserved area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3
bits of an address gives the corresponding external memory space address. However, since area
7 in the external memory space is a reserved area, a reserved area also appears in this area.

P4 Area: The P4 area is mapped onto SH7750 on-chip I1/0O channels. This area cannot be
accessed using the cache. The P4 area is shown in detail in figure 3.4.

Rev. 1.0, 08/98, page 33 of 385
HITACHI

H'E000 0000
Store queue

H'E400 0000

Reserved area
H'F000 0000 Instruction cache address array
H'F100 0000 Instruction cache data array
H'F200 0000 Instruction TLB address array
H'F300 0000 Instruction TLB data arrays 1 and 2
H'F400 0000 Operand cache address array
H'F500 0000 Operand cache data array
H'F600 0000 Unified TLB address array
H'F700 0000 Unified TLB data arrays 1 and 2
H'F800 0000

Reserved area
H'FF00 0000 Control register area

Figure 3.4 P4 Area

The area from H'EO00 0000 to H'E3FF FFFF comprises addresses for accessing the store queues
(SQs). When the MMU is disabled (MMUCR.AT = 0), the SQ access right is specified by the
MMUCR.SQMD bit. For details, see section 4.6, Store Queues.

The area from H'FO00 0000 to H'FOFF FFFF is used for direct access to the instruction cache
address array. For details, see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache
data array. For details, see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB
address array. For details, see section 3.7.1, ITLB Address Array.

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data
arrays 1 and 2. For details, see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Array 2.

Rev. 1.0, 08/98, page 34 of 385
HITACHI

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache
address array. For details, see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data
array. For details, see section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the unified TLB address
array. For details, see section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FFFF is used for direct access to unified TLB data arrays
1 and 2. For details, see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FF00 0000 to H'FFFF FFFF is the on-chip peripheral module control register
area.

3.3.2 External Memory Space

The SH7750 supports a 29-bit external memory space. The external memory space is divided
into eight areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM,
synchronous DRAM, DRAM, and PCMCIA. Area 7 is a reserved area. For details, see section
13, Bus State Controller (BSC), in the Hardware Manual.

H'0000 0000 Area 0
H'0400 0000 Area 1
H'0800 0000 Area 2
H'0C00 0000 Area 3
H'1000 0000 Area 4
H'1400 0000 Area 5
H'1800 0000 Area 6
:;C::'Sg 2?:?:?: Area 7 (reserved area)

Figure 3.5 External Memory Space

Rev. 1.0, 08/98, page 35 of 385
HITACHI

3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the PO, P3, and UQ areas of the physical memory space

in the SH7750 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte,
page units. By using an 8-bit address space identifier, the PO, U0, P3, and store queue areas can
be increased to a maximum of 256. This is called the virtual memory space. Mapping from

virtual memory space to 29-bit external memory space is carried out using the TLB. Only when
area 7 in external memory space is accessed using virtual memory space, addresses H'1F00 0000
to H'1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area

control register area in the physical memory space. Virtual memory space is illustrated in figure
3.6.

256 f A External 256 7
ﬁ ‘.. memory space ﬁ
Area 0
Area 1
Area 2
PO area Area 3 U0 area
Cacheable Area 4
Address translation possible Cacheaple .
Area 5 Address translation possible
Area 6
Area 7
P1 area ,
Cacheable N
Address translation not possible / ’,’
P2 area ,"
Non-cacheable !
Address translation not possible Address error
P3 area
Cacheable 1
Address translation possible [
___________ Pdarea.....______} Store queue area
Non-cacheable
Address translation not possible Address error
Privileged mode User mode

Figure 3.6 Virtual Memory Space (MMUCR.AT = 1)

PO, P3, U0 AreasThe PO area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area,

and UO area allow access using the cache and address translation using the TLB. These areas can
be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When
CCR is in the cache-enabled state and the TLB enable bit (C bit) is 1, accesses can be performed
using the cache. In write accesses to the cache, switching between the copy-back method and the

Rev. 1.0, 08/98, page 36 of 385
HITACHI

write-through method is indicated by the TLB write-through bit (WT bit), and is specified in
page units.

Only when the PO, P3, and UO areas are mapped onto external memory space by means of the
TLB, addresses H'1F00 0000 to H'1FFF FFFF of area 7 in external memory space are allocated
to the control register area. This enables on-chip peripheral module control registers to be
accessed from the UO area in user mode. In this case, the C bit for the corresponding page must
be cleared to 0.

P1, P2, P4 AreasAddress translation using the TLB cannot be performed for the P1, P2, or P4
area (except for the store queue area). Accesses to these areas are the same as for physical

memory space. The store queue area can be mapped onto any external memory space by the
MMU. However, operation in the case of an exception differs from that for normal PO, UO, and
P3 spaces. For details, see section 4.6, Store Queues.

3.34 On-Chip RAM Space

In the SH7750, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM.
This can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), PO area addresses H'7C00
0000 to H'7FFF FFFF are an on-chip RAM area. Data accesses (byte/word/longword/quadword)
can be used in this area. This area can only be used in RAM mode.

3.35 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and
translation to physical addresses is carried out in these page units. The address translation table
in external memory contains the physical addresses corresponding to virtual addresses and
additional information such as memory protection codes. Fast address translation is achieved by
caching the contents of the address translation table located in external memory into the TLB. In
the SH7750, basically, the ITLB is used for instruction accesses and the UTLB for data accesses.
In the event of an access to an area other than the P4 area, the accessed virtual address is
translated to a physical address. If the virtual address belongs to the P1 or P2 area, the physical
address is uniquely determined without accessing the TLB. If the virtual address belongs to the
PO, UO, or P3 area, the TLB is searched using the virtual address, and if the virtual address is
recorded in the TLB, a TLB hit is made and the corresponding physical address is read from the
TLB. If the accessed virtual address is not recorded in the TLB, a TLB miss exception is
generated and processing switches to the TLB miss exception routine. In the TLB miss
exception routine, the address translation table in external memory is searched, and the
corresponding physical address and page management information are recorded in the TLB.
After the return from the exception handling routine, the instruction which caused the TLB miss
exception is re-executed.

Rev. 1.0, 08/98, page 37 of 385
HITACHI

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory,

either of which can be selected with the MMUCR.SV bit. In the single virtual memory system, a
number of processes run simultaneously, using virtual address space on an exclusive basis, and
the physical address corresponding to a particular virtual address is uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple
virtual memory systems in terms of operation is in the TLB address comparison method (see
section 3.4.3, Address Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish
between processes running simultaneously while sharing the virtual address space. Software can
set the ASID of the currently executing process in PTEH in the MMU. The TLB does not have

to be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes
running simultaneously while using the virtual memory space on an exclusive basis.

34 TLB Functions

34.1 Unified TLB (UTLB) Configuration
The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As atable of address translation information to be recorded in the instruction TLB in the
event of an ITLB miss

Information in the address translation table located in external memory is cached into the UTLB.
The address translation table contains virtual page numbers and address space identifiers, and
corresponding physical page numbers and page management information. Figure 3.7 shows the
overall configuration of the UTLB. The UTLB consists of 64 fully-associative type entries.

Figure 3.8 shows the relationship between the address format and page size.

Rev. 1.0, 08/98, page 38 of 385
HITACHI

Entry 0 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ[1:0] |SH|C|PR [1:0]| D |WT|SA [2:0]|TC
Entry1 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] |SH|C|PR [1:0]|D|WT|SA [2:0] | TC
Entry2 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ[1:0] |SH|C|PR [1:0]|D |WT|SA [2:0] | TC

Entry 63 |ASID [7:0] | V.PN [31:10] | v | | PPN [28:10] | SZ [1:0] | SI-.I | c | PR [L:0] | D | WT|SA [2:0] | TC |

Figure 3.7 UTLB Configuration

» 1-kbyte page
Virtual address Physical address
31 10 9 0 28 10 9 0

VPN Offset — PPN Offset

* 4-kbyte page
Virtual address Physical address
31 12 11 0 28 1211 0

VPN Offset e PPN Offset

» 64-kbyte page
Virtual address Physical address
31 16 15 0 28 16 15 0

VPN Offset — PPN Offset

e 1-Mbyte page
Virtual address Physical address
31 2019 0 28 2019 0

VPN Offset — PPN Offset

Figure 3.8 Relationship between Page Size and Address Format

VPN: Virtual page number

For 1-kbyte page: upper 22 bits of virtual address

For 4-kbyte page: upper 20 bits of virtual address

For 64-kbyte page: upper 16 bits of virtual address
For 1-Mbyte page: upper 12 bits of virtual address

Rev. 1.0, 08/98, page 39 of 385
HITACHI

e ASID: Address space identifier
Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the
SH bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.

e SH: Share status bit
When 0, pages are not shared by processes.
When 1, pages are shared by processes.

e SZ: Page size bits
Specify the page size.
00: 1-kbyte page
01: 4-kbyte page
10: 64-kbyte page
11: 1-Mbyte page

* V: Validity bit
Indicates whether the entry is valid.
0: Invalid
1: Valid
Cleared to 0 by a power-on reset.
Not affected by a manual reset.

« PPN: Physical page number
Upper 22 bits of the physical address.
With a 1-kbyte page, PPN bits [28:10] are valid.
With a 4-kbyte page, PPN bits [28:12] are valid.
With a 64-kbyte page, PPN bits [28:16] are valid.
With a 1-Mbyte page, PPN bits [28:20] are valid.
The synonym problem must be taken into account when setting the PPN (see section 3.5.5,
Avoiding Synonym Problems).

¢ PR: Protection key data
2-bit data expressing the page access right as a code.
00: Can be read only, in privileged mode
01: Can be read and written in privileged mode
10: Can be read only, in privileged or user mode
11: Can be read and written in privileged mode or user mode

Rev. 1.0, 08/98, page 40 of 385
HITACHI

C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed

WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.
000: Undefined

001: Variable-size 1/0 space (base size accordid@iS16 signal)

010: 8-bit I/O space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

TC: Timing control bit

Used to select wait control register bits in the bus control unit for areas 5 and 6.
0: WCR2 (A5W2-A5W0) and PCR (ASPCW1-A5PCWO0, ASTED2—-AS5TEDO, ASTEH2—
AS5TEHO) are used

1: WCR2 (A6W2—-A6W0) and PCR (A6PCW1-A6PCWO0, A6TED2-A6TEDO, A6TEH2—
A6TEHO) are used

Rev. 1.0, 08/98, page 41 of 385
HITACHI

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figure
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 fully-associative type
entries. The address translation information is almost the same as that in the UTLB, but with the
following differences:

1. D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Entry O |ASID [7:0] | VPN [31:10]
Entry 1 |ASID [7:0] | VPN [31:10]
Entry 2 |ASID [7:0] | VPN [31:10]
Entry 3 |ASID [7:0] | VPN [31:10]

PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH

PR [SA[2:0]| TC
PR [SA[2:0]| TC
PR [SA[2:0]| TC
PR [SA[2:0]| TC

O|0|0|0

<[<|I<|<

Figure 3.9 ITLB Configuration

Rev. 1.0, 08/98, page 42 of 385
HITACHI

3.4.3 Address Translation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.

(Data access to virtual address (VA))
VAis VAis VAis VAis in PO, UO,
in P4 area |in P2 area in P1 area or P3 area

On-chip I/O access

VPNs match
and ASIDs match and
V=1

VPNs match
andV=1

0 (User)

Data TLB protection
violation exception

Cache access
in copy-back mode

Cache access
in write-through mode

»|
> Memory access ‘

(Non-cacheable)

Figure 3.10 Flowchart of Memory Access Using UTLB

Rev. 1.0, 08/98, page 43 of 385
HITACHI

Instruction access to virtual address (VA)

VAis VAis VAis
in P4 area | in P2 area
A
Access prohibited 0 CCR

in P1 area

VA s in PO, UO,
or P3 area

NO _Zhd (MMUCR.SV =0 of

VPNs match
andV =1

VPNs match
and ASIDs match and
V=1

No

Hardware ITLB
miss handling

Record in ITLB

Only one
entry matches

Instruction TLB
miss exception

Instruction TLB protection
violation exception

and CCR.ICE=1

1 (Privileged)

c=1

Cache access

Instruction TLB
multiple hit exception

I Memory access

(Non-cacheable)

Figure 3.11 Flowchart of Memory Access Using ITLB

Rev. 1.0, 08/98, page 44 of 385

HITACHI

3.5 MMU Functions

351 MMU Hardware Management
The SH7750 supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs address
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status on the basis of the page management
information read during address translation (C, WT, SA, and TC bits).

3. If address translation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB, and if the necessary address translation information is recorded in
the UTLB, the MMU copies this information into the ITLB in accordance with
MMUCR.LRUI.

3.5.2 MMU Software Management
Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped
UTLB. ITLB entries can only be recorded by writing directly to the memory-mapped ITLB.
For deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed based
on information set by hardware.

3.5.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH7750 copies the contents of PTEH, PTEL, and PTEA to the UTLB
entry indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it is
issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in
figure 3.12.

Rev. 1.0, 08/98, page 45 of 385
HITACHI

MMUCR

31 26 25 24 23 181716 15 109 8 7 3210
LRUI — URB — URC \SV - TIH—IAT|
——\
Entry specification SQMD
PTEL
31 2928 109 8 76 543210
— PPN —|[V [SZ| PR [SZ|C |D [SHWT|
PTEH
31 109 8 7 0
VPN — ASID PTEA
31 4 3 2 0
— TC| SA

v .w

Entry 0 | ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C [PR[1:0] | D | WT|SA[2:0] | TC

Entryl |ASID[7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C [PR[1:0] | D | WT|SA[2:0] | TC

Entry2 | ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] |SH|C [PR[1:0] | D | WT|SA[2:0] | TC

Entry 63 | ASID [7:0] | VPN [31:10] |V PPN [28:10] | SZ [1:0] |SH|C |PR[1:0] | D | WT|SA[2:0] [TC

uTLB
Figure 3.12 Operation of LDTLB Instruction
3.54 Hardware ITLB Miss Handling

In an instruction access, the SH7750 searches the ITLB. If it cannot find the necessary address
translation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware,
and if the necessary address translation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address translation
information is not found in the UTLB search, an instruction TLB miss exception is generated

and processing passes to software.

Rev. 1.0, 08/98, page 46 of 385

HITACHI

3.5.5 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical address,
the same physical address data is recorded in a number of cache entries, and it becomes
impossible to guarantee data integrity. This problem does not occur with the instruction TLB or
instruction cache . In the SH7750, entry specification is performed using bits [13:5] of the virtual
address in order to achieve fast operand cache operation. However, bits [13:10] of the virtual
address in the case of a 1-kbyte page, and bits [13:12] of the virtual address in the case of a 4-
kbyte page, are subject to address translation. As a result, bits [13:10] of the physical address
after translation may differ from bits [13:10] of the virtual address.

Consequently, the following restrictions apply to the recording of address translation information
in UTLB entries.

1. When address translation information whereby a number of 1-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN
[13:10] values are the same.

2. When address translation information whereby a number of 4-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN
[13:12] values are the same.

3. Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

4. Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

The above restrictions apply only when performing accesses using the cache. When cache index
mode is used, VPN [25] is used for the entry address instead of VPN [13], and therefore the
above restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to
provide for future SH Series expansion, ensure that the VPN [20:10] values are the same.
Also, do not use the same physical address for address translation information of
different page sizes.

Rev. 1.0, 08/98, page 47 of 385
HITACHI

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception,
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these
exceptions occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, a data TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency
is not guaranteed.

Hardware Processing:In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset RoutineYhe ITLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in
program debugging, and should not normally be generated.

Rev. 1.0, 08/98, page 48 of 385
HITACHI

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB miss
exception.

Hardware Processing:In the event of an instruction TLB miss exception, hardware carries out
the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bitin SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and

starts the instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine)Software is

responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the
necessary page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of
the SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
TLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued at least one instruction after the LDTLB instruction.

Rev. 1.0, 08/98, page 49 of 385
HITACHI

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR
bit. The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing:In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0AO in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bitin SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and

starts the instruction TLB protection violation exception handling routine.

Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return
instruction (RTE), terminate the exception handling routine, and return control to the normal
flow. The RTE instruction should be issued at least one instruction after the LDTLB instruction.

Rev. 1.0, 08/98, page 50 of 385
HITACHI

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made. A data TLB multiple hit exception is also
generated if multiple hits occur when the UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing:In the event of a data TLB multiple hit exception, hardware carries out
the following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routinelhe UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in
program debugging, and should not normally be generated.

3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address
to which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing:In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPEVT
(OCBP, OCBWSB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR.

Sets the MD bitin SR to 1, and switches to privileged mode.

Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TLB miss exception handling routine.

© ®~N oo,

Rev. 1.0, 08/98, page 51 of 385
HITACHI

Software Processing (Data TLB Miss Exception Handling Routine)Software is responsible
for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary
page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of
the SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued at least one instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made, the
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardware Processing:In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0AQ in the case of a read, or H'OCO in the case of a write, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR.

Sets the MD bitin SR to 1, and switches to privileged mode.

Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TLB protection violation exception handling routine.

© ® N oo,

Rev. 1.0, 08/98, page 52 of 385
HITACHI

Software Processing (Data TLB Protection Violation Exception Handling Routine)Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is O even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing:In the event of an initial page write exception, hardware carries out the
following processing:

A

© ® N>’

Sets the VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'080 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR.

Sets the MD bit in SR to 1, and switches to privileged mode.

Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the initial page write exception handling routine.

Rev. 1.0, 08/98, page 53 of 385
HITACHI

Software Processing (Initial Page Write Exception Handling Routine)The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.

2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, Sz, C, D, WT, SH, and V bits in the page table
entry recorded in external memory. If necessary, the values of the SA and TC bits should be
written to PTEA.

4. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued at least one instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and

written by a P2 area program with a MOV instruction in privileged mode. Operation is not
guaranteed if access is made from a program in another area. A branch to an area other than the
P2 area should be made at least 8 instructions after this MOV instruction. The ITLB and UTLB
are allocated to the P4 area in physical memory space. VPN, V, and ASID in the ITLB can be
accessed as an address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data
array 2. VPN, D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ,
PR, C, D, WT, and SH as data array 1, and SA and TC as data array 2. V and D can be accessed
from both the address array side and the data array side. Only longword access is possible.
Instruction fetches cannot be performed in these areas. For reserved bits, a write value of 0
should be specified; their read value is undefined.

Rev. 1.0, 08/98, page 54 of 385
HITACHI

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area.
An address array access requires a 32-bit address field specification (when reading or writing)
and a 32-bit data field specification (when writing). Information for selecting the entry to be
accessed is specified in the address field, and VPN, V, and ASID to be written to the address

array are specified in the data field.

In the address field, bits [31:24] have the value H'F2 indicating the ITLB address array, and the
entry is selected by bits [9:8]. As longword access is used, 0 should be specified for address field

bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].

The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the
entry set in the address field.

2. ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to

the entry set in the address field.

Address field

Data field

31 2423 10987 0

112 2121000]2]0] v E | cooeereneniniiniens

31 10987 0
VPN -V ASID

VPN: Virtual page number

V: Validity bit
E: Entry

ASID: Address space identifier
: Reserved bits (0 write value, undefined
read value)

Figure 3.13 Memory-Mapped ITLB Address Array

Rev. 1.0, 08/98, page 55 of 385

HITACHI

3.7.2 ITLB Data Array 1

ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array are

specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the

entry is selected by bits [9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit

[6], C by bit [3], and SH by bit [1].
The following two kinds of operation can be used on ITLB data array 1:

1. ITLB data array 1 read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to

the entry set in the address field.
2. ITLB data array 1 write

PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry

corresponding to the entry set in the address field.

31 2423 109 8 7 0
Address field | 111200 2[1]0] --ererreremmommmmiii, E | cooeveiemiiiiiiinns
31302928 109876543210
Data field | PPN .l lc}.-
| / |
PPN: Physical page number PR: Protection key data PR SZ SH
V: Validity bit C: Cacheability bit
E: Entry SH: Share status bit
SZ: Page size bits ---: Reserved bits (0 write value, undefined
read value)

Figure 3.14 Memory-Mapped ITLB Data Array 1

Rev. 1.0, 08/98, page 56 of 385
HITACHI

3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the
data field.

In the address field, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the
entry is selected by bits [9:8].

In the data field, SA is indicated by bits [2:0], and TC by bit [3].
The following two kinds of operation can be used on ITLB data array 2:

1. ITLB data array 2 read

SA and TC are read into the data field from the ITLB entry corresponding to the entry set in
the address field.

2. ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry corresponding to the
entry set in the address field.

31 2423 10987 0
Address field [1 ({1111 l0l0l2]2]2] «coooveerereei, E | cooriiii
31 4320
Data fleld | oo SA
|
I
- .) . TC
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure 3.15 Memory-Mapped ITLB Data Array 2

3.74 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 area.
An address array access requires a 32-bit address field specification (when reading or writing)
and a 32-bit data field specification (when writing). Information for selecting the entry to be
accessed is specified in the address field, and VPN, D, V, and ASID to be written to the address
array are specified in the data field.

Rev. 1.0, 08/98, page 57 of 385
HITACHI

In the address field, bits [31:24] have the value H'F6 indicating the UTLB address array, and the

e
(0]

ntry is selected by bits [13:8]. The address array bit [7] association bit (A bit) specifies whether
r not address comparison is performed when writing to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits
[7:0].

The following three kinds of operation can be used on the UTLB address array:

1.

UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry

corresponding to the entry set in the address field. The A bit in the address field should be
cleared to 0.

UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and PTEH.ASID. The
usual address comparison rules are followed, but the occurrence of a TLB miss exception
results in no operation. If the comparison identifies a UTLB entry corresponding to the VPN
specified in the data field, D and V specified in the data field are written to that entry. If
there is more than one matching entry, a data TLB multiple hit exception results. This
associative operation is simultaneously carried out on the ITLB, and if a matching entry is
found in the ITLB, V is written to that entry. Even if the UTLB comparison results in no
operation, a write to the ITLB side only is performed as long as there is an ITLB match. If
there is a match in both the UTLB and ITLB, the UTLB information is also written to the
ITLB.

31 2423 1413 8 7 210
Address field [121210121 2]0] «vcvovevreremememiiiinne. E Al e

31302928 109 8 7 0
Data field VPN DV ASID

VPN: Virtual page number ASID: Address space identifier
V: Validity bit A: Association bit
E: Entry ----: Reserved bits (0 write value, undefined
D: Dirty bit read value)

Figure 3.16 Memory-Mapped UTLB Address Array

Rev. 1.0, 08/98, page 58 of 385
HITACHI

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the data

array are specified in the data field.

In the address field, bits [31:23] have the value H'F70 indicating UTLB data array 1, and the

entry is selected by bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bits

[6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1. UTLB data array 1 read
PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array 1 write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entry

corresponding to the entry set in the address field.

Address field

Data field

31 2423 1413 8 7 0
111212101222 0] cerverereemeneeiniaanenn. E | e
31302928 109876543210
....... PPN .. V PR C D
/ |

PPN: Physical page number PR: Protection key data \/ ‘

V: Validity bit C: Cacheability bit Sz SH WT

E: Entry SH: Share status bit

SZ: Page size bits WT: Write-through bit

D: Dirty bit Reserved bits (0 write value, undefined

read value)

Figure 3.17 Memory-Mapped UTLB Data Array 1

HITACHI

Rev. 1.0, 08/98, page 59 of 385

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the
data field.

In the address field, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the
entry is selected by bits [13:8].

In the data field, TC is indicated by bit [3], and SA by bits [2:0].
The following two kinds of operation can be used on UTLB data array 2:

1. UTLB data array 2 read

SA and TC are read into the data field from the UTLB entry corresponding to the entry set in
the address field.

2. UTLB data array 2 write

SA and TC specified in the data field are written to the UTLB entry corresponding to the
entry set in the address field.

31 2423 14 13 8 7 0
Addressfield [1[1|1l2lol2l2]2]a] «-oooeoeveeeeeeeiiinnns E | e
31 432 0
Data field | ..o SA
TC: Timing control bit SA: Space attribute bits TC
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure 3.18 Memory-Mapped UTLB Data Array 2

Rev. 1.0, 08/98, page 60 of 385
HITACHI

4.1 Overview

41.1 Features

Section 4 Caches

The SH7750 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operand
cache (OC) for data. Half of the memory of the operand cache (8 kbytes) can also be used as on-
chip RAM. The features of these caches are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache +
8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method

Copy-back/write-through selectable

Item Store Queues

Capacity 2 x 32 bytes

Addresses H'E000 0000 to H'E3FF FFFF
Write Store instruction (1-cycle write)
Write-back Prefetch instruction

Access right

MMU off: according to MMUCR.SQMD
MMU on: according to individual page PR

Rev. 1.0, 08/98, page 61 of 385
HITACHI

41.2 Register Configuration
Table 4.2 shows the cache control registers.

Table 4.2 Cache Control Registers

Initial P4 Area 7 Access
Name Abbreviation R/W Value** Address* ? Address* ? Size
Cache control CCR R/W H'0000 0000 H'FF00 001C H'1F00001C 32
register
Queue address QACRO R/W Undefined H'FFO0 0038 H'1F00 0038 32
control register 0
Queue address QACR1 R/W Undefined H'FF00 003C H'1F00 003C 32

control register 1

Notes: 1. The initial value is the value after a power-on or manual reset.
2. This is the address when using the virtual/physical address space P4 area. When

making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

CCR
31 161514 1211109 8 7 6 543 2 1 0
... | ceseccsss | coceee ’ ces | ces | CB/ |
| | [N N R
X ICI ICE OIX ORA OCI WT OCE
QACRO
31 54 210
... AREA
QACR1
31 54 210
... AREA

'''''''' indicates reserved bits: 0 must be specified in a write; the read value is undefined.

Figure 4.1 Cache and Store Queue Control Registers

Rev. 1.0, 08/98, page 62 of 385
HITACHI

(1) Cache Control Register (CCR)CCR contains the following bits:

I1X: IC index enable

ICI: IC invalidation

ICE: IC enable

OIX: OC index enable
ORA: OC RAM enable
OCI: OC invalidation

CB: Copy-back enable
WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H'FFO0 001C in the P4 area and H'1F00 001C
in area 7. The CCR bits are used for the cache settings described below. Consequently, CCR
modifications must only be made by a program in the non-cached P2 area. After CCR is

updated, an instruction that performs data access to the PO, P1, P3, or UO area should be located
at least four instructions after the CCR update instruction. Also, a branch instruction to the PO,
P1, P3, or U0 area should be located at least eight instructions after the CCR update instruction.

¢ IIX: IC index enable bit

0: Address bits [12:5] used for IC entry selection

1: Address bits [25] and [11:5] used for IC entry selection
¢ ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always
returns O when read.

* |CE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the IC
cannot be used unless the C bit in the page management information is also 1.

0: IC not used

1:1C used
¢ OIX: OC index enable bit

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection
¢ ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entry
128 to entry 255 and from entry 384 to entry 511 of the OC are to be used as RAM. When
the OC is not enabled (OCE = 0), the ORA bit should be cleared to 0.

0: 16 kbytes used as cache
1: 8 kbytes used as cache, and 8 kbytes as RAM

Rev. 1.0, 08/98, page 63 of 385
HITACHI

* OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit
always returns 0 when read.

» CB: Copy-back bit
Indicates the P1 area cache write mode.
0: Write-through mode
1: Copy-back mode
e WT: Write-through bit
Indicates the PO, U0, and P3 area cache write mode. When address translation is performed,
the value of the WT bit in the page management information has priority.
0: Copy-back mode
1: Write-through mode
* OCE: OC enable bit
Indicates whether or not the OC is to be used. When address translation is performed, the OC
cannot be used unless the C bit in the page management information is also 1.
0: OC not used
1: OC used

(2) Queue Address Control Register 0 (QACRO)-ongword access to QACRO can be
performed from H'FFO0 0038 in the P4 area and H'1F00 0038 in area 7. QACRO specifies the
area onto which store queue 0 (SQO) is mapped when the MMU s off.

(3) Queue Address Control Register 1 (QACR1)ongword access to QACRL1 can be
performed from H'FFO0 003C in the P4 area and H'1F00 003C in area 7. QACRL1 specifies the
area onto which store queue 1 (SQ1) is mapped when the MMU s off.

Rev. 1.0, 08/98, page 64 of 385
HITACHI

4.3 Operand Cache (OC)

4.3.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

Effective address

31 26 25 131211109 543210
A L\
»| RAM area
determination

\4 A [11:5]
22 -

9 Longword (LW) selection

Address array 3 Data array

5 0| Tagaddress | U | V LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

k3]

o

[5]

2]
MMU P

IS

w >
19

511 19 bits 1 bit|1 bit 32 bits|32 bits|32 bits|32 bits|32 bits|32 bits|32 bits|32 bits
A A A A A A A A
l l A4 A4 A 4 A 4 A4 A 4 A4 A4
>
1 I
Read data Write data

Hit signal

Figure 4.2 Configuration of Operand Cache

Rev. 1.0, 08/98, page 65 of 385
HITACHI

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and
32-byte data.

 Tag
Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.

+ V bit (validity bit)
Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

* U bit (dirty bit)
The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section 4.5,
Memory-Mapped Cache Configuration). The U bit is initialized to 0 by a power-on reset, but
retains its value in a manual reset.

e Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not
initialized by a power-on or manual reset.

4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address from
a cacheable area, the cache operates as follows:

1. Thetag, V bit, and U bit are read from the cache line indexed by effective address bits
[13:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

« If the tag matches and the V bit is 1 - (3a)
« If the tag matches and the V bit is 0 - (3b)
» If the tag does not match and the V bit is 0 - (3b)

+ If the tag does not match, the V bit is 1, and the U bitis 0 — (3b)
» If the tag does not match, the V bit is 1, and the U bitis 1 — (3C)

Rev. 1.0, 08/98, page 66 of 385
HITACHI

3a. Cache hit

The data indexed by effective address bits [4:0] is read from the data field of the cache line
indexed by effective address bits [13:5] in accordance with the access size
(quadword/longword/word/byte).

3b. Cache miss (no write-back)

3c.

Data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and when the corresponding data
arrives in the cache, the read data is returned to the CPU. While the remaining one cache line
of data is being read, the CPU can execute the next processing. When reading of one line of
data is completed, the tag corresponding to the effective address is recorded in the cache, and
1 is written to the V bit.

Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved in
the write-back buffer. Then data is read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and when
the corresponding data arrives in the cache, the read data is returned to the CPU. While the
remaining one cache line of data is being read, the CPU can execute the next processing.
When reading of one line of data is completed, the tag corresponding to the effective address
is recorded in the cache, 1 is written to the V bit, and 0 to the U bit. The data in the write-
back buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective address to
a cacheable area, the cache operates as follows:

1.

The tag, V bit, and U bit are read from the cache line indexed by effective address bits
[13:5].
The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

Copy-back Write-through

« If the tag matches and the V bit is 1 - (3a) - (3b)
« If the tag matches and the V bit is 0 - (3¢) - (3d)
« If the tag does not match and the V bit is 0 - (3¢) - (3d)
« If the tag does not match, the V bit is 1, and the U bitis 0 — (3C) - (3d)
» If the tag does not match, the V bit is 1, and the U bitis 1 — (3€e) - (3d)

Rev. 1.0, 08/98, page 67 of 385
HITACHI

3a. Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then 1 is set in the U bit.

3b. Cache hit (write-through)

3c.

3d.

3e.

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. A write is also performed to the corresponding
external memory using the specified access size.

Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then, data is read into the cache line from the
external memory space corresponding to the effective address. Data reading is performed,
using the wraparound method, in order from the longword data corresponding to the effective
address, and one cache line of data is read excluding the written data. During this time, the
CPU can execute the next processing. When reading of one line of data is completed, the tag
corresponding to the effective address is recorded in the cache, and 1 is written to the V bit
and U bit.

Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to the
effective address. In this case, a write to cache is not performed.

Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first
saved in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits [4:0] of the
effective address of the data field of the cache line indexed by effective address bits [13:5].
Then, data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and one cache line of data is read
excluding the written data. During this time, the CPU can execute the next processing. When
reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, and 1 is written to the V bit and U bit. The data in the write-back
buffer is then written back to external memory.

Rev. 1.0, 08/98, page 68 of 385
HITACHI

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH7750 has a
write-back buffer which holds the relevant cache entry when it becomes necessary to purge a
dirty cache entry into external memory as the result of a cache miss. The write-back buffer
contains one cache line of data and the physical address of the purge destination.

Physical address bits [28:5] | LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

Figure 4.3 Configuration of Write-Back Buffer

4.3.5 Write-Through Buffer

The SH7750 has a 64-bit buffer for holding write data when writing data in write-through mode

or writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon
as the write to the write-through buffer is completed, without waiting for completion of the write

to external memory.

Physical address bits [28:0] | LWO | LW1

Figure 4.4 Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand
cache entries used as RAM are entries 128 to 255 and 384 to 511 . Other entries can still be used
as cache. RAM can be accessed using addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-,
longword-, and quadword-size data reads and writes can be performed in the operand cache
RAM area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256
are designated as RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area
2.

Rev. 1.0, 08/98, page 69 of 385
HITACHI

When OC index mode is off (CCR.OIX = 0)

H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2
H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2
H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF
can be used, for example.

When OC index mode is on (CCR.OIX = 1)

H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

H'7DFF FO00 to H'7DFF FFFF (4 kB): Corresponds to RAM area 1
H'7E00 0000 to H'7E00 OFFF (4 kB): Corresponds to RAM area 2
H'7E00 1000 to H'7E00 1FFF (4 kB): Corresponds to RAM area 2

H'7FFF FOOO to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area from
H'7DFF FOO0O to H'7E00 OFFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective
address. This is called OC index mode. In normal mode, with CCR.OIX cleared to 0, OC
indexing is performed using bits [13:5] of the effective address; therefore, when 16 kbytes or
more of consecutive data is handled, the OC is fully used by this data. This results in frequent
cache misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of
effective address bit [25], providing efficient use of the cache.

Rev. 1.0, 08/98, page 70 of 385

HITACHI

4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH7750,
the following four new instructions are supported for cache operations. For details of these
instructions, see section 10, Instruction Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)
Purge instruction: OCBP @Rn Cache invalidation (with write-back)
Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L RO,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH7750 supports a prefetch instruction to reduce the cache fill penalty incurred as the result
of a cache miss. If it is known that a cache miss will result from a read or write operation, it is
possible to fill the cache with data beforehand by means of the prefetch instruction to prevent a
cache miss due to the read or write operation, and so improve software performance. If a
prefetch instruction is executed for data already held in the cache, or if an MMU exception
occurs at the intended prefetch address, the result is no operation, and an exception is not
generated. For details of the prefetch instruction, see section 10.74, PREF.

Prefetch instruction: PREF @Rn

Rev. 1.0, 08/98, page 71 of 385
HITACHI

4.4 Instruction Cache (IC)

441 Configuration

Figure 4.5 shows the configuration of the instruction cache.

Effective address

31 26 25 131211109 543210
. AN/ \/
v [11:5]
IIX —> =
22 Longword (LW) selection
8 Address array 3 Data array
s 0| Tagaddress | V LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7
k3]
Q
[]
[
MMU 2
c
wl
19
255 19 bits 1 bit 32 hits|32 bits|32 bits| 32 bits|32 bits| 32 bits|32 bits|32 bits
A A A A A A A A
A4 A4 A4 A4 A4 A4 A4 A4
—>
A 4
Compare l
Read data

Hit signal

Figure 4.5 Configuration of Instruction Cache

Rev. 1.0, 08/98, page 72 of 385
HITACHI

The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-
byte data (16 instructions).

« Tag
Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.
* 'V bit (validity bit)
Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.
* Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not
initialized by a power-on or manual reset.

4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an
effective address from a cacheable area, the instruction cache operates as follows:

1. The tag and V bit are read from the cache line indexed by effective address bits [12:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

O If the tag matches and the V bitis 1 - (3a)

O If the tag matches and the V bitis 0 - (3b)

O If the tag does not match and the V bit is 0- (3b)

O If the tag does not match and the V bit is 1» (3b)
3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data field
of the cache line indexed by effective address bits [12:5].

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and when the corresponding data
arrives in the cache, the read data is returned to the CPU as an instruction. When reading of
one line of data is completed, the tag corresponding to the effective address is recorded in the
cache, and 1 is written to the V bit.

Rev. 1.0, 08/98, page 73 of 385
HITACHI

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using bit [25] of the effective address.
This is called IC index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is
performed using bits [12:5] of the effective address; therefore, when 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program. This results

in frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte areas by
means of effective address bit [25], providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

To enable the IC and OC to be managed by software, their contents can be read and written by a
P2 area program with a MOV instruction in privileged mode. Operation is not guaranteed if

access is made from a program in another area. In this case, a branch to the PO, U0, P1, or P3
area should be made at least 8 instructions after this MOV instruction. The IC and OC are

allocated to the P4 area in physical memory space. Only data accesses can be used on both the

IC address array and data array and the OC address array and data array, and accesses are always
longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a write
value of 0 should be specified; their read value is undefined.

45.1 IC Address Array

The IC address array is allocated to addresses H'FO00 0000 to H'FOFF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'FO indicating the IC address array, and the
entry is specified by bits [12:5]. CCR.IIX has no effect on this entry specification. The address
array bit [3] association bit (A bit) specifies whether or not association is performed when
writing to the IC address array. As only longword access is used, 0 should be specified for
address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which
association is not performed. Data field bits [31:29] are used for the virtual address specification
only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

Rev. 1.0, 08/98, page 74 of 385
HITACHI

1. IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry set
in the address field. In a read, associative operation is not performed regardless of whether
the association bit specified in the address field is 1 or 0.

2. IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the
entry set in the address field. The A bit in the address field should be cleared to 0.

3. IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field bits [31:10] has been translated to a physical address using the ITLB. If the
addresses match and the V bit is 1, the V bit specified in the data field is written into the IC
entry. This operation is used to invalidate a specific IC entry. If an instruction TLB miss
exception or protection violation exception occurs during address translation, or the
comparison shows a mismatch, no operation results and the write is not performed. If an
instruction TLB multiple hit exception occurs during address translation, processing switches
to the instruction TLB multiple hit exception handling routine.

31 2423 1312 543210
Addressfield [1[1[1]1[0]0]0[0] - reeeerermmmemiiiin. Entry AL
31 109 10
Data field Tag address 0 e Vv
V : Validity bit
A : Association bit
--: Reserved bits (0 write value, undefined read value)

Figure 4.6 Memory-Mapped IC Address Array

45.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the
longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the entry
is specified by bits [12:5]. CCR.IIX has no effect on this entry specification. Address field bits
[4:2] are used for the longword data specification in the entry. As only longword access is used,
0 should be specified for address field bits [1:0].

Rev. 1.0, 08/98, page 75 of 385
HITACHI

The data field is used for the longword data specification.
The following two kinds of operation can be used on the IC data array:

1. IC data array read
Longword data is read into the data field from the data specified by the longword
specification bits in the address field in the IC entry corresponding to the entry set in the
address field.

2. IC data array write
The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the IC entry corresponding to the entry set in the
address field.

31 2423 1312 54 210
Address field |11 [1]1]0]0]0|1] rererrerrmrermemeiiiinnin. Entry L |-
31 0

Data field Longword data

L : Longword specification bits
. Reserved bits (0 write value, undefined read value)

Figure 4.7 Memory-Mapped IC Data Array

453 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4AFF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the
entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry
specification. The address array bit [3] association bit (A bit) specifies whether or not

association is performed when writing to the OC address array. As only longword access is used,
0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0].

As the OC address array tag is 19 bits in length, data field bits [31:29] are not used in the case of
a write in which association is not performed. Data field bits [31:29] are used for the virtual
address specification only in the case of a write in which association is performed.

Rev. 1.0, 08/98, page 76 of 385
HITACHI

The following three kinds of operation can be used on the OC address array:

1. OC address array read
The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

2. OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding
to the entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after
write-back of that cache line, the tag, U bit, and V bit specified in the data field are written.
3. OC address array write (associative)
When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field bits [31:10] has been translated to a physical address using the UTLB. If the
addresses match and the V bit is 1, the U bit and V bit specified in the data field are written
into the OC entry. This operation is used to invalidate a specific OC entry. If the OC entry U
bit is 1, and 0 is written to the V bit or to the U bit, write-back is performed. If a data TLB
miss exception occurs during address translation, or the comparison shows a mismatch, no
operation results and the write is not performed. If a data TLB multiple hit exception occurs
during address translation, processing switches to the data TLB multiple hit exception
handling routine.

31 2423 1413 543210
Address field |11 [1]2]0] 2[00 errerermemmimniniiiianns Entry O N R

31 109 210

Data fleld Tag address e ulv

V : Validity bit

U : Dirty bit

A : Association bit

---- 1 Reserved bits (0 write value, undefined read value)

Figure 4.8 Memory-Mapped OC Address Array

Rev. 1.0, 08/98, page 77 of 385
HITACHI

45.4 OC Data Array

The OC data array is allocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the
longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the entry
is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification.
Address field bits [4:2] are used for the longword data specification in the entry. As only
longword access is used, 0 should be specified for address field bits [1:0].

The data field is used for the longword data specification.
The following two kinds of operation can be used on the OC data array:

1. OC data array read
Longword data is read into the data field from the data specified by the longword
specification bits in the address field in the OC entry corresponding to the entry set in the
address field.

2. OC data array write
The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the OC entry corresponding the entry set in the
address field. This write does not set the U bit to 1 on the address array side.

31 2423 1413 54 210
Address field |11 [1]2[0]2]0]| L] errerrrrermemeienininnnnn. Entry L feeeees
31 0

Data field Longword data

L : Longword specification bits
--: Reserved bits (0 write value, undefined read value)

Figure 4.9 Memory-Mapped OC Data Array

Rev. 1.0, 08/98, page 78 of 385
HITACHI

4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in figure 4.10. These two store
gueues can be set independently.

SQO | SQO[0] | SQO[1] | SQO[2] | SQO[3] | SQO[4] | SQO[5] | SQO[6] | SQO[7]

SQ1 | SQ1[0] | SQ1[1] | SQ1[2] | SQ1[3] | SQ1[4] | SQI[5] | SQ1[6] | SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure 4.10 Store Queue Configuration

4.6.2 SQ Writes

A write to the SQs can be performed using a store instruction (MOV) on P4 area H'EO00 0000 to
H'E3FF FFFC. A longword or quadword access size can be used. The meaning of the address
bits is as follows:

[31:26]: 111000 Store queue specification

[25:6]: Don't care Used for external memory transfer/access right
[5]: 0/1 0: SQO specification 1: SQ1 specification
[4:2]: LW specification Specifies longword position in SQ0/SQ1

[1:0] 00 Fixed at O

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for P4 area H'E000 0000 to H'E3FF FFFC starts a burst transfer from
the SQs to external memory. The burst transfer length is fixed at 32 bytes, and the start address
is always at a 32-byte boundary. While the contents of one SQ are being transferred to external
memory, the other SQ can be written to without a penalty cycle, but writing to the SQ involved

in the transfer to external memory is deferred until the transfer is completed.

The SQ transfer destination external memory address bit [28:0] specification is as shown below,
according to whether the MMU is on or off.

Rev. 1.0, 08/98, page 79 of 385
HITACHI

When MMU is on

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer
destination external memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have the
same meaning as for normal address translation, but the C and WT bits have no meaning
with regard to this page. Since burst transfer is prohibited for PCMCIA areas, the SA and TC
bits also have no meaning.

When a prefetch instruction is issued for the SQ area, address translation is performed and
external memory address bits [28:10] are generated in accordance with the SZ bit
specification. For external memory address bits [9:5], the address prior to address translation
is generated in the same way as when the MMU is off. External memory address bits [4:0]
are fixed at 0. Transfer from the SQs to external memory is performed to this address.
When MMU is off

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefetch is
performed. The meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification
[25:6]: Address External memory address bits [25:6]
[5]: 0/1 0: SQO specification
1: SQ1 specification and external memory address bit [5]
[4:2]: Don't care No meaning in a prefetch
[1:0] 00 Fixed at O

External memory address bits [28:26], which cannot be generated from the above address,
are generated from the QACRO/1 registers.

QACRO [4:2]: External memory address bits [28:26] corresponding to SQO

QACR1 [4:2]: External memory address bits [28:26] corresponding to SQ1

External memory address bits [4:0] are always fixed at O since burst transfer starts at a 32-
byte boundary.

Rev. 1.0, 08/98, page 80 of 385

HITACHI

4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ write
violates the protection setting, an exception will be generated but the SQ contents will be
corrupted. If a transfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.

* When MMU is on
Operation is in accordance with the address translation information recorded in the UTLB,
and MMUCR.SQMD. Write type exception judgment is performed for writes to the SQs, and
read type for transfer from the SQs to external memory (PREF instruction), and a TLB miss
exception, protection violation exception, or initial page write exception is generated.
However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be flagged in user mode even if address translation is successful.

* When MMU is off
Operation is in accordance with MMUCR.SQMD.
0: Privileged/user access possible
1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error
will be flagged.

Rev. 1.0, 08/98, page 81 of 385
HITACHI

Rev. 1.0, 08/98, page 82 of 385
HITACHI

Section 5 Exceptions

51 Overview

51.1 Features

Exception handling is processing handled by a special routine, separate from normal program
processing, that is executed by the CPU in case of abnormal events. For example, if the
executing instruction ends abnormally, appropriate action must be taken in order to return to the
original program sequence, or report the abnormality before terminating the processing. The
process of generating an exception handling request in response to abnormal termination, and
passing control to a user-written exception handling routine, in order to support such functions,
is given the generic name of exception handling.

SH7750 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Register Configuration
The registers used in exception handling are shown in table 5.1.

Table 5.1 Exception-Related Registers

Abbrevia- P4 Area 7 Access
Name tion R/W Initial Value* * Address*®> Address*? Size
TRAPA exception TRA R/W Undefined H'FFO0 0020 H'1F00 0020 32
register
Exception event EXPEVT R/W H'0000 0000/ H'FFO0 0024 H'1F00 0024 32
register H'0000 0020*"
Interrupt event INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32
register

Notes: 1. H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.

2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 1.0, 08/98, page 83 of 385
HITACHI

5.2 Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and can
be accessed by specifying the P4 address or area 7 address.

1.

The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains a
12-bit exception code. The exception code set in EXPEVT is that for a reset or general
exception event. The exception code is set automatically by hardware when an exception
occurs. EXPEVT can also be modified by software.

The interrupt event register (INTEVT) resides at P4 address H'FFO0 0028, and contains a 12-
bit exception code. The exception code set in INTEVT is that for an interrupt request. The
exception code is set automatically by hardware when an exception occurs. INTEVT can also
be modified by software.

The TRAPA exception register (TRA) resides at P4 address H'FF00 0020, and contains 8-bit
immediate data (imm) for the TRAPA instruction. TRA is set automatically by hardware

when a TRAPA instruction is executed. TRA can also be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.

EXPEVT and INTEVT

31 12 11 0
0 0 Exception code

TRA

31 10 9 210
0 0 imm 00

0: Reserved bits. These bits are always read as 0, and should only be written
with 0.
imm: 8-bit immediate data of the TRAPA instruction

Figure 5.1 Register Bit Configurations

Rev. 1.0, 08/98, page 84 of 385
HITACHI

5.3 Exception Handling Functions

5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SR) are
saved in the saved program counter (SPC) and saved status register (SSR), and the CPU starts
execution of the appropriate exception handling routine according to the vector address. An
exception handling routine is a program written by the user to handle a specific exception. The
exception handling routine is terminated and control returned to the original program by
executing a return-from-exception instruction (RTE). This instruction restores the PC and SR
contents and returns control to the normal processing routine at the point at which the exception
occurred.

The basic processing flow is as follows. See section 2, Data Formats and Registers, for the
meaning of the individual SR bits.

The PC and SR contents are saved in SPC and SSR.

The block bit (BL) in SR is set to 1.

The mode bit (MD) in SR is set to 1.

The register bank bit (RB) in SR is set to 1.

In a reset, the FPU disable bit (FD) in SR is cleared to 0.

The exception code is written to bits 11-0 of the exception event register (EXPEVT) or
interrupt event register (INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.

o gk~ whPE

5.3.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In the case of the TLB miss exception, for example,
the offset is H'0000 0400, so if H'9C08 0000 is set in VBR, the exception handling vector
address will be H'9C08 0400. If a further exception occurs at the exception handling vector
address, a duplicate exception will result, and recovery will be difficult; therefore, fixed physical
addresses (P1, P2) should be specified for vector addresses.

Rev. 1.0, 08/98, page 85 of 385
HITACHI

5.4 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.2 Exceptions

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Reset Abort type Power-on reset 1 1 H'A000 0000 — H'000
Manual reset 1 2 H'A000 0000 — H'020
Hitachi-UDI reset 1 1 H'A000 0000 — H'000
Instruction TLB multiple-hit 1 3 H'A000 0000 — H'140
exception
Data TLB multiple-hit exception 1 4 H'A000 0000 — H'140
General Re- User break before instruction 2 0 (VBR/DBR) H'100/— H'1EO
exception execution execution**
type
Instruction address error 2 1 (VBR) H'100 H'OEO
Instruction TLB miss exception 2 2 (VBR) H'400 H'040
Instruction TLB protection 2 3 (VBR) H'100 H'0A0
violation exception
General illegal instruction 2 4 (VBR) H'100 H'180
exception
Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0
General FPU disable exception 2 4 (VBR) H'100 H'800
Slot FPU disable exception 2 4 (VBR) H'100 H'820
Data address error (read) 2 5 (VBR) H'100 H'OEO
Data address error (write) 2 5 (VBR) H'100 H'100
Data TLB miss exception (read) 2 6 (VBR) H'400 H'040
Data TLB miss exception (write) 2 6 (VBR) H'400 H'060
Data TLB protection 2 7 (VBR) H'100 H'0A0
violation exception (read)
Data TLB protection 2 7 (VBR) H'100 H'0CO
violation exception (write)
FPU exception 2 8 (VBR) H'100 H'120
Initial page write exception 2 9 (VBR) H'100 H'080
Completion Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160
type
User break after instruction 2 10 (VBR/DBR) H'100/— H'1EO

execution**

Rev. 1.0, 08/98, page 86 of 385
HITACHI

Table 5.2 Exceptions (cont)

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Nonmaskable interrupt 3 — (VBR) H'600 H'1CO
type
External IRL3—-IRLO O 4 *2 (VBR) H'600 H'200
interrupts
1 H'220
2 H'240
3 H'260
4 H'280
5 H'2A0
6 H'2C0
7 H'2EOQ
8 H'300
9 H'320
A H'340
B H'360
C H'380
D H'3A0
E H'3CO
Peripheral TMUO TUNIO 4 *2 (VBR) H'600 H'400
module
interrupt
(module/
source)
TMU1 TUNI1 H'420
T™MU2 TUNI2 H'440
TICPI2 H'460
RTC ATI H'480
PRI H4A0
cu H'4CO
SCI ERI H'4E0
SCI RXI H'500
TXI H'520
TEI H'540
WDT ITI H'560
REF RCMI H'580
ROVI H'5A0
Hitachi-UDI Hitachi- H'600
uDI

Rev. 1.0, 08/98, page 87 of 385
HITACHI

Table 5.2 Exceptions (cont)

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt Completion Peripheral DMAC DMTEO 4 *2 (VBR) H'600 H'640
type module
interrupt
(module/
source)
DMTE1 H'660
DMTE2 H'680
DMTE3 H'6A0
DMAE H'6CO
SCIF ERI H'700
RXI H'720
BRI H'740
TXI H'760

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest
number represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset]
in other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an
interrupt.

IRL: Interrupt request level (pins IRL3-IRLO).
Module/source: See the sections on the relevant peripheral modules.

Notes: 1. When BRCR.UBDE =1, PC = DBR. In other cases, PC = VBR + H'100.

2. The priority order of external interrupts and peripheral module interrupts can be set by
software.

5.5 Exception Flow

5.5.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions
are executed sequentially, one by one. Figure 5.2 shows the relative priority order of the
different kinds of exceptions (reset/general exception/interrupt). Register settings in the event of
an exception are shown only for SSR, SPC, EXPEVT/INTEVT, SR, and PC, but other registers
may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for
exception handling during execution of a delayed branch instruction and a delay slot instruction,
and in the case of instructions in which two data accesses are performed.

Rev. 1.0, 08/98, page 88 of 385
HITACHI

Reset Yes

requested?

Execute next instruction

Is highest-
priority exception
re-exception

General
exception requested?

type? - - -
dy Cancel instruction execution
No result
Interrupt
requested?
A Y
No SSR « SR EXPEVT ~ exception code
SPC - PC SR. {MD, RB, BL, FD, IMASK} ~ 11101111
SGR ~ R15 PC ~ H'A000 0000

EXPEVT/INTEVT ~ exception code

SR.{MD,RB,BL} ~ 111

PC —~ (BRCR.UBDE=1 && User_Break?
DBR: (VBR + Offset))

A 4 A, y

Figure 5.2 Instruction Execution and Exception Handling

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—the
general illegal instruction exception, slot illegal instruction exception, general FPU disable
exception, slot FPU disable exception, and unconditional trap exception—are detected in the
process of instruction decoding, and do not occur simultaneously in the instruction pipeline.
These exceptions therefore all have the same priority. General exceptions are detected in the
order of instruction execution. However, exception handling is performed in the order of
instruction flow (program order). Thus, an exception for an earlier instruction is accepted before
that for a later instruction. An example of the order of acceptance for general exceptions is
shown in figure 5.3.

Rev. 1.0, 08/98, page 89 of 385
HITACHI

Pipeline flow: V TLB miss (data access)

Instruction n IF | ID | EX | MA | WB
Instruction n+1 IF ID | EX | MA | WB
i A General illegal instruction exception
V TLB miss (instruction access)
Instruction n+2 | IF ‘ ID ‘ EX ‘ MA ‘ WB |
IF: Instruction fetch
ID: Instruction decode

| IE ‘ D ‘ EX ‘ MA ‘ WB | EX: Instruction execution
MA: Memory access
WB: Write-back

Instruction n+3

Order of detection:

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

i

TLB miss (instruction n)

Order of exception handling: Program order
TLB miss (instruction n)
1
Re-execution of instruction n
General illegal instruction exception
(instruction n+1)
2

Re-execution of instruction n+1

!

TLB miss (instruction n+2)

i 3

Re-execution of instruction n+2

Execution of instruction n+3 4

Figure 5.3 Example of General Exception Acceptance Order

Rev. 1.0, 08/98, page 90 of 385
HITACHI

5.5.3 Exception Requests and BL Bit
When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers are set to their post-reset state, the registers of the other modules retain their
contents prior to the exception, and the CPU branches to the same address as in a reset (H'A000
0000). For the operation in the event of a user break, see section 20, User Break Controller. If an
ordinary interrupt occurs, the interrupt request is held pending and is accepted after the BL bit
has been cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held
pending or accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

554 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU returns
from the exception handling routine by branching to the SPC address. If SPC and SSR were
saved to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents
and issuing the RTE instruction.

Rev. 1.0, 08/98, page 91 of 385
HITACHI

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and processor operation when a transition is made.

5.6.1 Resets

(1) Power-On Reset

Sources:

0 SCK2 pin high level an®RESET pin low level

0 When the watchdog timer overflows while the \WIThit is set to 1 and the RSTS bit is
cleared to 0 in WTCSR. For details, see section 10, Clock Oscillation Circuits.

Transition address: H'’A000 0000

Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,

RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) are

setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register

descriptions in the relevant sections. For some CPU functionRE pin andRESET pin

must be driven low. It is therefore essential to execute a power-on reset and dfiR§The

pin low when powering on.

Power_on_reset()

{

EXPEVT = H'00000000;
VBR = H'00000000;

SR.MD = 1;

SR.RB =1;

SR.BL = 1;

SR.(10-13) = B'1111;
SR.FD=0;

Initialize_CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

Rev. 1.0, 08/98, page 92 of 385
HITACHI

(2) Manual Reset

* Sources:
O SCK2 pin low level andRESET pin low level
0 When a general exception other than a user break occurs while the BL bit is setto 1 in SR
O When the watchdog timer overflows while the RSTS bit is set to 1 in WTCSR. For

details, see section 10, Clock Oscillation Circuits.

» Transition address: H'A000 0000

» Transition operations:
Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.
In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) are
setto B'1111.
CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

Manual_reset()

{
EXPEVT = H'00000020;
VBR = H'00000000;
SR.MD = 1;
SR.RB =1;
SR.BL = 1;
SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

Rev. 1.0, 08/98, page 93 of 385
HITACHI

Table 5-3 Types of Reset

Reset State Transition

Conditions Internal States
On-Chip Peripheral
Type SCK2 RESET CPU Modules
Power-on reset High Low Initialized See Register

Configuration in
each section

Manual reset Low Low Initialized

(3) Hitachi-UDI Reset

» Source: SDIR.TI3-TIO = B'0110 (negation) or B'0111 (assertion)
» Transition address: H'A000 0000
» Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

Hitachi-UDI_reset()

{
EXPEVT = H'00000000;
VBR = H'00000000;
SR.MD = 1;
SR.RB =1;
SR.BL = 1;
SR.(I0-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

Rev. 1.0, 08/98, page 94 of 385
HITACHI

(4) Instruction TLB Multiple-Hit Exception

e Source: Multiple ITLB address matches
* Transition address: H'A000 0000
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates

the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) are

setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a

manual reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
EXPEVT = H'00000140;
VBR = H'00000000;
SR.MD = 1;
SR.RB =1,
SR.BL = 1;
SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

HITACHI

Rev

. 1.0, 08/98, page 95 of 385

(5) Operand TLB Multiple-Hit Exception

Source: Multiple UTLB address matches

Transition address: H'’A000 0000

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) are
setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a
manual reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
EXPEVT = H'00000140;

VBR = H'00000000;

SR.MD = 1;

SR.RB =1,

SR.BL = 1;

SR.(10-13) = B'1111;

SR.FD =0;

Initialize_CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

Rev. 1.0, 08/98, page 96 of 385
HITACHI

5.6.2 General Exceptions

(1) Data TLB Miss Exception

Source: Address mismatch in UTLB address comparison

Transition address: VBR + H'0000 0400

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER,;

SPC = PC;

SSR = SR;

EXPEVT = read_access ? H'00000040 : H'00000060;
SR.MD =1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000400;

Rev. 1.0, 08/98, page 97 of 385
HITACHI

(2) Instruction TLB Miss Exception

Source: Address mismatch in ITLB address comparison

Transition address: VBR + H'0000 0400

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

ITLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

EXPEVT = H'00000040;

SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000400;

Rev. 1.0, 08/98, page 98 of 385
HITACHI

(3) Initial Page Write Exception

Source: TLB is hit in a store access, but dirty bit D =0

Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100.

Initial_write_exception()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

EXPEVT = H'00000080;

SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 99 of 385
HITACHI

(4) Data TLB Protection Violation Exception

Source: The access does not accord with the UTLB protection information (PR bits) shown

below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible
11 Read/write access possible Read/write access possible

Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'0AQ (for a read access) or H'OCO (for a write access) is set in EXPEVT.
The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER,;

SPC = PC;

SSR = SR;

EXPEVT = read_access ? H'000000A0 : H'000000CO0;
SR.MD =1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 100 of 385

HITACHI

(5) Instruction TLB Protection Violation Exception

Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode
0 Access possible Access not possible
1 Access possible Access possible

Transition address: VBR + H'0000 0100
Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'0AO is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100.

ITLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

EXPEVT = H'000000AO0;

SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 101 of 385
HITACHI

(6) Data Address Error

* Sources:
0 Word data access from other than a word boundary (2n +1)
0 Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n
+3)
0 Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3,
8n+4,8n+5,8n+6,0r8n+7)
O Access to area H'8000 0000—H'FFFF FFFF in user mode
+ Transition address: VBR + H'0000 0100
» Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'OEO (for a read access) or H'100 (for a write access) is set in EXPEVT.
The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100.
For details, see section 3, Memory Management Unit (MMU).

Data_address_error()

{
TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER,;
SPC = PC;
SSR = SR;
EXPEVT = read_access? H'000000EO: H'00000100;
SR.MD =1;
SR.RB = 1;
SR.BL = 1;
PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 102 of 385
HITACHI

(7) Instruction Address Error

Sources:

O Instruction fetch from other than a word boundary (2n +1)

O Instruction fetch from area H'8000 0000—H'FFFF FFFF in user mode

Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'OEOQ is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100. For details, see section 3, Memory Management Unit
(MMU).

Instruction_address_error()

{

TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

EXPEVT = H'000000EO;

SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 103 of 385
HITACHI

(8) Unconditional Trap

* Source: Execution of TRAPA instruction
* Transition address: VBR + H'0000 0100
e Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The value of SR when the TRAPA
instruction is executed are saved in SSR. The 8-bit immediate value in the TRAPA
instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'160 is set
in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()
{
SPC =PC + 2;
SSR = SR;
TRA =imm << 2;
EXPEVT = H'00000160;
SR.MD =1,
SR.RB = 1;
SR.BL=1;
PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 104 of 385
HITACHI

(9) General lllegal Instruction Exception

Sources:
0 Decoding of an undefined instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S,
BF/S

Undefined instruction: H'FFFD
0 Decoding in user mode of a privileged instruction not in a delay slot
Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR
Transition address: VBR + H'0000 0100
Transition operations:
The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code
other than H'FFFD is decoded.

General_illegal_instruction_exception()

{

SPC = PC;

SSR = SR;

EXPEVT = H'00000180;
SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 105 of 385
HITACHI

(10) Slot lllegal Instruction Exception

Sources:

O

O

Decoding of an undefined instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S,
BF/S

Undefined instruction: H'FFFD
Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+, SR

Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

Transition address: VBR + H'0000 0100

Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR
contents when this exception occurred are saved in SSR.

Exception code H'1AQ is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code
other than H'FFFD is decoded.

Slot_illegal_instruction_exception()

{

SPC =PC - 2;

SSR = SR;

EXPEVT = H'000001A0;
SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 106 of 385

HITACHI

(11) General FPU Disable Exception

Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

Transition address: VBR + H'0000 0100

Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F

(but excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

General_fpu_disable_exception()

{

SPC = PC;

SSR = SR;

EXPEVT = H'00000800;
SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 107 of 385
HITACHI

(12) Slot FPU Disable Exception

» Source: Decoding of an FPU instruction in a delay slot with SR.FD =1
» Transition address: VBR + H'0000 0100
» Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR
contents when this exception occurred are saved in SSR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0100.

Slot_fpu_disable_exception()
{

SPC=PC-2;

SSR = SR;

EXPEVT = H'00000820;

SR.MD =1,

SR.RB = 1;

SR.BL=1;

PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 108 of 385
HITACHI

(13) User Breakpoint Trap

» Source: Fulfilling of a break condition set in the user break controller
+ Transition address: VBR + H'0000 0100, or DBR
» Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution break,
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR contents when the break occurred are saved in SSR. Exception code H'1EQ is set in
EXPEVT.

The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100. It
is also possible to branch to PC = DBR.

For details of PC, etc., when a data break is set, see section 20, User Break Controller.

User_break_exception()
{
SPC = (pre_execution break? PC : PC + 2);
SSR = SR;
EXPEVT = H'000001EQ;
SR.MD = 1;
SR.RB =1;
SR.BL = 1;
PC = (BRCR.UBDE==1 ? DBR : VBR + H'00000100);

Rev. 1.0, 08/98, page 109 of 385
HITACHI

(14) FPU Exception

» Source: Exception due to execution of a floating-point operation
» Transition address: VBR + H'0000 0100
» Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in
SPC and SSR. Exception code H'120 is set in EXPEVT. The BL, MD, and RB bits are set to
1in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()
{
SPC = PC;
SSR = SR;
EXPEVT = H'00000120;
SR.MD =1,
SR.RB = 1;
SR.BL=1;
PC = VBR + H'00000100;

Rev. 1.0, 08/98, page 110 of 385
HITACHI

5.6.3 Interrupts

(1) NMI

Source: NMI pin edge detection

Transition address: VBR + H'0000 0600

Transition operations:

The PC and SR contents for the instruction at which this exception is accepted are saved in
SPC and SSR.

Exception code H'1CO is set in INTEVT. The BL, MD, and RB bits are setto 1 in SR, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. When
the BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. For details, see section 19, Interrupt Controller.

NMI()
{
SPC = PC;
SSR = SR;
INTEVT = H'000001CO;
SR.MD =1;
SR.RB =1,
SR.BL =1;

PC = VBR + H'00000600;

Rev. 1.0, 08/98, page 111 of 385
HITACHI

(2) IRL Interrupts

Source: The interrupt mask bit setting in SR is smaller than the IRL (3-0) level, and the BL
bit in SR is 0 (accepted at instruction boundary).

Transition address: VBR + H'0000 0600

Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR contents at the time of acceptance are set in SSR.

The code corresponding to the IRL (3-0) level is set in INTEVT. See table 19.5, Interrupt
Exception Handling Sources and Priority Order, for the corresponding codes. The BL, MD,
and RB bits are setto 1 in SR, and a branch is made to VBR + H'0600. The acceptance level
is not set in the interrupt mask bits in SR. When the BL bit in SR is 1, the interrupt is
masked. For details, see section 19, Interrupt Controller.

IRL()

{

SPC = PC;

SSR = SR;

INTEVT = H'00000200 ~ H'000003CO0;
SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000600;

Rev. 1.0, 08/98, page 112 of 385
HITACHI

(3) Peripheral Module Interrupts

Source: The interrupt mask bit setting in SR is smaller than the peripheral module (Hitachi-
UDI, DMAC, TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bit in SR is

0 (accepted at instruction boundary).

Transition address: VBR + H'0000 0600

Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR contents at the time of acceptance are set in SSR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits
are setto 1 in SR, and a branch is made to VBR + H'0600. The module interrupt levels
should be set as values between B’0000 and B’1111 in the interrupt priority registers (IPRA—
IPRC) in the interrupt controller. For details, see section 19, Interrupt Controller.

Module_interruption()

{

SPC = PC;

SSR = SR;

INTEVT = H'00000400 ~ H'00000760;
SR.MD =1;

SR.RB =1,

SR.BL =1;

PC = VBR + H'00000600;

Rev. 1.0, 08/98, page 113 of 385
HITACHI

5.6.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from the
normal order.

1. Instructions that make two accesses to memory
With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will
be detected for each of these data transfers. In these cases, therefore, the following order is
used to determine priority.

Data address error in first data transfer

TLB miss in first data transfer

TLB protection violation in first data transfer

Initial page write exception in first data transfer

Data address error in second data transfer

TLB miss in second data transfer

TLB protection violation in second data transfer

Initial page write exception in second data transfer

2. Indivisible delayed branch instruction and delay slot instruction
As a delayed branch instruction and its associated delay slot instruction are indivisible, they
are treated as a single instruction. Consequently, the priority order for exceptions that occur
in these instructions differs from the usual priority order. The priority order shown below is
for the case where the delay slot instruction has only one data transfer.
a. The delayed branch instruction is checked for priority levels 1 and 2.
b. The delay slot instruction is checked for priority levels 1 and 2.
c. A check is performed for priority level 3 in the delayed branch instruction and priority

level 3 in the delay slot instruction. (There is no priority ranking between these two.)
d. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as
in 1 above.
If the accepted exception (the highest-priority exception) is a delay slot instruction re-
execution type exception, the branch instruction PR register write operation (FR
operation performed in BSR, BSRF, JSR) is inhibited.

S@e@ "o e e o

Rev. 1.0, 08/98, page 114 of 385
HITACHI

5.7

Usage Notes

1. Return from exception handling

a

Check the BL bit in SR with software. If SPC and SSR have been saved to external
memory, set the BL bit in SR to 1 before restoring them.

Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the
SSR contents are set in SR, and branch is made to the SPC address to return from the
exception handling routine.

2. If an exception or interrupt occurs when SR.BL =1

a

Exception

When an exception other than a user break occurs, the CPU’s internal registers are set to
their post-reset state, the registers of the other modules retain their contents prior to the
exception, and the CPU branches to the same address as in a reset (H'A000 0000). The
value in EXPEVT at this time is H'0000 0020; the value of the SPC and SSR registers is
undefined.

Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software. In
the sleep or standby state, however, an interrupt is accepted even if the BL bit in SR is set
to 1.

3. SPC when an exception occurs

a

Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the
instruction is re-executed after returning from exception handling. If an exception occurs
in a delay slot instruction, however, the PC value for the delay slot instruction is saved in
SPC regardless of whether or not the preceding delay slot instruction condition is
satisfied.

Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in
SPC. If an exception occurs in a branch instruction with delay slot, however, the PC
value for the branch destination is saved in SPC.

4. An exception must not be generated in an RTE instruction delay slot, as the operation will be
undefined in this case.

Rev. 1.0, 08/98, page 115 of 385
HITACHI

Rev. 1.0, 08/98, page 116 of 385
HITACHI

Section 6 Floating-Point Unit

6.1 Overview
The floating-point unit (FPU) has the following features:

e Conforms to IEEE754 standard

* 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

« Two rounding modes: Round to Nearest and Round to Zero

* Two denormalization modes: Flush to Zero and Treat Denormalized Number

¢ Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

« Comprehensive instructions: Single-precision, double-precision, graphics support, system
control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU
instruction will cause an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point Format
A floating-point number consists of the following three fields:

e Sign (s)
* Exponent (e)
¢ Fraction (f)

The SH7750 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31 30 23 22 0

s e f

Figure 6.1 Format of Single-Precision Floating-Point Number

Rev. 1.0, 08/98, page 117 of 385
HITACHI

63 62 52 51 0

Figure 6.2 Format of Double-Precision Floating-Point Number
The exponent is expressed in biased form, as follows:
e = E + bias

The range of unbiased exponent E jsE1to E_+ 1. The two valuesF—-1and E_+ 1 are
distinguished as follows. E— 1 indicates zero (both positive and negative sign) and a
denormalized number, and Et+ 1 indicates positive or negative infinity or a non-number
(NaN). Table 6.1 shows bias, Eand E_, values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision
Total bit width 32 hits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits
Fraction field 23 hits 52 bits
Precision 24 bits 53 bits

Bias +127 +1023

E,.. +127 +1023

E -126 -1022

'min

Floating-point number value v is determined as follows:

IfFE=E, + 1andf 0, vis a non-number (NaN) irrespective of sign s
IfE=E, +1andf=0,v=(-1infinity) [positive or negative infinity]
IfE, <E<E_,Vv=(-1J2° (1.f) [normalized number]

IfE=E, —1and 0, v=(-12""(0.f) [denormalized number]
IfE=E, —1andf=0,v= (-1 [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Rev. 1.0, 08/98, page 118 of 385
HITACHI

Table 6.2

Type

Floating-Point Ranges

Single-Precision

Double-Precision

Signaling non-number

H'7FFFFFFF to H'7FC00000

H7FFFFFFF H'FFFFFFFF to
H'7FF80000 H'00000000

Quiet non-number

H'7FBFFFFF to H'7F800001

H'7FF7FFFF H'FFFFFFFF to
H'7FF00000 H'00000001

Positive infinity

H'7F800000

H'7FFO0000 H'00000

Positive normalized
number

H'7F7FFFFF to H'00800000

H7FEFFFFF HFFFFFFFF to
H'00100000 H'00000000

Positive denormalized
number

H'007FFFFF to H'00000001

H'000FFFFF H'FFFFFFFF to
H'00000000 H'00000001

Positive zero

H'00000000

H'00000000 H'00000000

Negative zero

H'80000000

H'80000000 H'00000000

Negative denormalized
number

H'80000001 to H'807FFFFF

H'80000000 H'00000001 to
H'800FFFFF H'FFFFFFFF

Negative normalized
number

H'80800000 to H'FF7FFFFF

H'80100000 H'00000000 to
H'FFEFFFFF HFFFFFFFF

Negative infinity

H'FF800000

H'FFFO0000 H'00000000

Quiet non-number

H'FF800001 to H'FFBFFFFF

H'FFF00000 H'00000001 to
HFFF7FFFF HFFFFFFFF

Signaling non-number

H'FFC00000 to H'FFFFFFFF

H'FFF80000 H'00000000 to
HFFFFFFFF H'FFFFFFFF

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:

» Sign bit: Don't care

» Exponent field: All bits are 1
* Fraction field: At least one bitis 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN
(gNaN) if the MSB is 0.

Rev. 1.0, 08/98, page 119 of 385
HITACHI

31 30 23 22 0

X 11111111 NIXXXXXXXXXXKXXXXXXXXKXXXX

N = 1: sNaN
N = 0: gNaN

Figure 6.3 Single-Precision NaN Bit Pattern

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a floating-
point value.

* When the EN.V bit in the FPSCR register is 0, the operation result (output) is a gNaN.

» When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register are unchanged.

If a gNaN is input in an operation that generates a floating-point value, and an sNaN has not
been input in that operation, the output will always be a gNaN irrespective of the setting of the
EN.V bit in the FPSCR register. An exception will not be generated in this case.

The gNAN values generated by the SH7750 as operation results are as follows:

» Single-precision gNaN: H'7FBFFFFF
» Double-precision gNaN: H'7FF7FFFF FFFFFFFF

See section 10, Instruction Descriptions, for details of floating-point operations when a non-
number (NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number (source
operand or operation result) is always flushed to 0 in a floating-point operation that generates a
value (an operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is
processed as it is. See the individual instruction descriptions for details of floating-point
operations when a denormalized number is input.

Rev. 1.0, 08/98, page 120 of 385
HITACHI

6.3 Registers

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FRO-FR15, DR0/2/4/6/8/10/12/14, F\0/4/8/12, XFO—
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

1

Floating-point registers, FPRi_BANK] (32 registers)

FPRO_BANKO—FPR15_BANKO

FPRO_BANK1-FPR15_BANK1

Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FRO-FR15 indicate FPRO_BANKO-FPR15_BANKO;

when FPSCR.FR =1, FRO-FR15 indicate FPRO_BANK1-FPR15_ BANKI1.
Double-precision floating-point registers, DRI (8 registers): A DR register comprises two FR
registers

DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},

DRS8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}
Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FV0 = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FRS8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XFO—XF15 indicate FPRO_BANK1-FPR15_ BANK1;

when FPSCR.FR =1, XFO-XF15 indicate FPRO_BANKO-FPR15_BANKO.

Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers
XDO0 = {XFO0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14,
XF15}
Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers
XMTRX = | XFO XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15

Rev. 1.0, 08/98, page 121 of 385
HITACHI

FPSCR.FR =0

FVO DRO FRO
FR1

DR2 FR2

FR3

Fv4 DR4 FR4
FR5

DR6 FR6

FR7

Fv8 DR8 FRS8
FR9

DR10 FR10

FR11

FvV12 DR12 FR12
FR13

DR14 FR14

FR15

XMTRX XDO XFO
XF1

XD2 XF2
XF3

XD4 XF4
XF5

XD6 XF6
XF7

XD8 XF8
XF9

XD10 XF10
XF11

XD12 XF12
XF13

XD14 XF14
XF15

FPRO_BANKO

FPR1_BANKO

FPR2_BANKO

FPR3_BANKO

FPR4_BANKO

FPR5_BANKO

FPR6_BANKO

FPR7_BANKO

FPR8_BANKO

FPR9_BANKO

FPR10_BANKO

FPR11_BANKO

FPR12_BANKO

FPR13_BANKO

FPR14_BANKO

FPR15_BANKO

FPRO_BANK1

FPR1_BANK1

FPR2_BANK1

FPR3_BANK1

FPR4_BANK1

FPR5_BANK1

FPR6_BANK1

FPR7_BANK1

FPR8_BANK1

FPR9_BANK1

FPR10_BANK1

FPR11_BANK1

FPR12_BANK1

FPR13_BANK1

FPR14_BANK1

FPR15_BANK1

FPSCR.FR =1

XFO XDO XMTRX
XF1

XF2 XD2
XF3
XF4 XD4
XF5
XF6 XD6
XF7
XF8 XD8
XF9
XF10 XD10
XF11
XF12 XD12
XF13
XF14 XD14
XF15

FRO DRO FVO
FR1

FR2 DR2

FR3

FR4 DR4 FV4
FR5

FR6 DR6

FR7

FR8 DR8 FV8
FR9

FR10 DR10
FR11

FR12 DR12 FV12
FR13

FR14 DR14
FR15

Figure 6.4 Floating-Point Registers

Rev. 1.0, 08/98, page 122 of 385

HITACHI

6.3.2 Floating-Point Status/Control Register (FPSCR)

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

FR: Floating-point register bank

FR = 0: FPRO_BANKO-FPR15_ BANKO are assigned to FRO-FR15; FPRO_BANK1-
FPR15 BANKI1 are assigned to XFO—XF15.

FR = 1: FPRO_BANKO-FPR15_BANKO are assigned to XFO—XF15; FPRO_BANK1-
FPR15_BANK1 are assigned to FRO-FR15.

SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).
PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics
support instructions are undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)
DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z2) (O)) 0]
Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

When an FPU exception is requested, the corresponding bits in the cause and flag fields are
set to 1. Each time an FPU operation instruction is executed, the cause field is cleared to 0
first. The flag field retains the value of 1 until cleared to O by software.

RM: Rounding mode

RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved

RM = 11: Reserved

Rev. 1.0, 08/98, page 123 of 385
HITACHI

» Bits 22 to 31: Reserved

Notes: The following functions have been added to the FPU of the SH7750 (not provided in the
FPU of the SH7718):

1. The FR, SZ, and PR bits have been added.

2. Exception O (overflow), U (underflow), and I (inexact) bits have been added to the
cause, enable, and flag fields.

3. An exception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a single-
precision floating-point number, the processing flow is as follows:

R1 - (LDS instruction)-» FPUL - (single-precision FLOAT instruction) FR1

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRV, and FIPR will differ from the result when using a basic instruction such as FADD,
FSUB, or FMUL. Rounding is performed once in FMAC, but twice in FADD, FSUB, and
FMUL.

There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

* RM =00: Round to Nearest
¢« RM =01: Round to Zero

Rev. 1.0, 08/98, page 124 of 385
HITACHI

Round to Nearest:The value is rounded to the nearest expressible value. If there are two
nearest expressible values, the one with an LSB of 0 is selected.

If the unrounded value i$”* (2 — 2°) or more, the result will be infinity with the same sign as
the unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-
precision, and 1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be
the maximum expressible absolute value.

6.5 Floating-Point Exceptions
FPU-related exceptions are as follows:

» General illegal instruction/slot illegal instruction exception
The exception occurs if an FPU instruction is executed when SR.FD = 1.
¢ FPU exceptions
The exception sources are as follows:
FPU error (E): When FPSCR.DN = 0 and a denormalized number is input
Invalid operation (V): In case of an invalid operation, such as NaN input
Division by zero (Z): Division with a zero divisor
Overflow (O): When the operation result overflows
Underflow (U): When the operation result underflows
Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V, Z, O, U, and
I, and the FPSCR flag and enable fields contain bits corresponding to sources V, Z, O, U, and
[, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause field is setto 1, and 1 is
added to the corresponding bit in the flag field. When an exception source does not occur,
the corresponding bit in the cause field is cleared to 0, but the corresponding bit in the flag
field remains unchanged.

« Enable/disable exception handling

The SH7750 supports enable exception handling and disable exception handling.

Enable exception handling is initiated in the following cases:

0 FPU error (E): FPSCR.DN = 0 and a denormalized number is input

O Invalid operation (V): FPSCR.EN.V = 1 and (instruction = FTRV or invalid operation)
O Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor
0

Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result
overflow

Y

Rev. 1.0, 08/98, page 125 of 385
HITACHI

O Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result
underflow
O Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact
operation result
These possibilities are shown in the individual instruction descriptions. All exception events
that originate in the FPU are assigned as the same exception event. The meaning of an
exception is determined by software by reading system register FPSCR and interpreting the
information it contains. If no bits are set in the cause field of FPSCR when one or more of
bits O, U, I, and V (in case of FTRV only) are set in the enable field, this indicates that an
actual exception source is not generated. Also, the destination register is not changed by any
enable exception handling operation.
Except for the above, the FPU disables exception handling. In all processing, the bit
corresponding to source V, Z, O, U, or | is set to 1, and disable exception handling is
provided for each exception.
O Invalid operation (V): gNAN is generated as the result.
O Division by zero (Z): Infinity with the same sign as the unrounded value is generated.
O Overflow (O):
When rounding mode = RZ, the maximum normalized number, with the same sign as the
unrounded value, is generated.
When rounding mode = RN, infinity with the same sign as the unrounded value is
generated.
O Underflow (U):
When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded
value, or zero with the same sign as the unrounded value, is generated.
When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.
O Inexact exception (I): An inexact result is generated.

Rev. 1.0, 08/98, page 126 of 385
HITACHI

6.6 Graphics Support Functions

The SH7750 supports two kinds of graphics functions: new instructions for geometric
operations, and pair single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-
speed computation with a minimum of hardware, the SH7750 ignores comparatively small
values in the partial computation results of four multiplications. Consequently, the error shown
below is produced in the result of the computation:

Maximum error =MAX (individual multiplication result x
2—MIN(number of multiplier significant digits—1, number of multiplicand sngnlflcan(dlglts—l)) + MAX (result Value X 2—23’ 2—149)

The number of significant digits is 24 for a normalized number and 23 for a denormalized
number (number of leading zeros in the fractional part).

FIPR FVm, FVn (m, n: 0, 4, 8, 12):This instruction is basically used for the following
purposes:

e Inner product (¥ n):

This operation is generally used for surface/rear surface determination for polygon surfaces.
e Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (1) bit in the cause field and flag field is always set to 1 when an FIPR
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): This instruction is basically used for the following
purposes:

e Matrix (4 x 4) Cvector (4):
This operation is generally used for viewpoint changes, angle changes, or movements called
vector transformations (4-dimensional). Since affine transformation processing for angle +
parallel movement basically requires & 4 matrix, the SH7750 supports 4-dimensional
operations.

e Matrix (4 x 4) x matrix (4% 4):
This operation requires the execution of four FTRV instructions.

Rev. 1.0, 08/98, page 127 of 385
HITACHI

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (1) bit in the cause field and flag field is always set to 1 when an FTRV
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed. For the same reason, it is not possible to check all data
types in the registers beforehand when executing an FTRV instruction. If the V bit is set in the
enable field, enable exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instruction is
executed, matrix elements must be set in an array in the background bank. However, to create
the actual elements of a translation matrix, it is easier to use registers in the foreground bank.
When the LDC instruction is used on FPSCR, this instruction expends 4 to 5 cycles in order to
maintain the FPU state. With the FRCHG instruction, an FPSCR.FR bit modification can be
performed in one cycle.

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH7750 also supports high-
speed data transfer instructions.

When FPSCR.SZ =1, the SH7750 can perform data transfer by means of pair single-precision
data transfer instructions.

« FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)
« FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision 82-bit) data items to be transferred; that is,
the transfer performance of these instructions is doubled.

e FSCHG
This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between
use and non-use of pair single-precision data transfer.

Rev. 1.0, 08/98, page 128 of 385
HITACHI

Section 7 Instruction Set

7.1 Execution Environment
PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH7750’s instruction set is implemented with 16-bit fixed-length
instructions. The SH7750 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword
(64-bit) data sizes for memory access. Single-precision floating-point data (32 bits) can be
moved to and from memory using longword or quadword size. Double-precision floating-point
data (64 bits) can be moved to and from memory using longword size. When a double-precision
floating-point operation is specified (FPSCR.PR = 1), the result of an operation using quadword
access will be undefined. When the SH7750 moves byte-size or word-size data from memory to
a register, the data is sign-extended.

Load-Store Architecture: The SH7750 features a load-store architecture in which operations
are basically executed using registers. Except for bit-manipulation operations such as logical
AND that are executed directly in memory, operands in an operation that requires memory
access are loaded into registers and the operation is executed between the registers.

Delayed BranchesExcept for the two branch instructions BF and BT, the SH7750’s branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution slot following a
delayed branch is called a delay slot. For example, the BRA execution sequence is as follows:

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, RO ADD R1, RO ADD in delay slot is executed before
next_2 target_instr branching to TARGET

Delay Slot: An illegal instruction exception may occur when a specific instruction is executed in
a delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for which the
branch is not taken is also a delay slot instruction.

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and
is referenced by a conditional branch instruction. An example of the use of a conditional branch
instruction is shown below.

ADD #1, RO ; T bit is not changed by ADD operation
CMP/EQ R1, RO ; IfRO=R1, T bitis setto 1
BT TARGET ; Branchesto TARGET if T bit =1 (RO = R1)

Rev. 1.0, 08/98, page 129 of 385
HITACHI

In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access, the
MD bit is used before modification, and in data access, the MD bit is accessed after

modification. The other bits—S, T, M, Q, FD, BL, and RB—after modification are used for

delay slot instruction execution. The STC and STC.L SR instructions access all SR bits after
modification.

Constant Values:An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible
to set 0.0 or 1.0 by using the FLDIO or FLDI1 instruction on a single-precision floating-point
register.

Rev. 1.0, 08/98, page 130 of 385
HITACHI

7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When a
location in virtual memory space is accessed (MMUCR.AT = 1), the effective address is
translated into a physical memory address. If multiple virtual memory space systems are selected
(MMUCR.SV = 0), the least significant bit of PTEH is also referenced as the access ASID. See
section 3, Memory Management Unit (MMU).

Table 7.1 Addressing Modes and Effective Addresses

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register Rn Effective address is register Rn. —
direct (Operand is register Rn contents.)
Register @Rn Effective address is register Rn contents. Rn - EA
indirect (EA: effective
address)
Register @Rn+ Effective address is register Rn contents. Rn - EA
indirect A constant is added to Rn after instruction After
with post- execution: 1 for a byte operand, 2 for a word instruction
increment operand, 4 for a longword operand, 8 for a execution
quadword operand. Byte:
Word:
Rn + 1/2/4/8
L ° Rn+2 - Rn
Longword:
1/2/4/8 Rn+4 - RN
Quadword:
Rn+8 - Rn
Register @-Rn Effective address is register Rn contents, Byte:
indirect decremented by a constant beforehand: Rn—-1 - Rn
with pre- 1 for a byte operand, 2 for a word operand, Word:
decrement 4 for a longword operand, 8 for a quadword RN — 2 ~ Rn
operand.
Longword:
- Rn—4 - Rn
Rn — 1/2/4/8 _ Quadword:
S Rn — 1/2/4/8 Rn_8 - Rn
1/2/4/8 Rn - EA
(Instruction
executed
with Rn after
calculation)

Rev. 1.0, 08/98, page 131 of 385

HITACHI

Table 7.1 Addressing Modes and Effective Addresses (cont)
Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register @(disp:4, Rn) Effective address is register Rn contents with Byte: Rn +
indirect with 4-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), \yord: Rn +
or 4 (longword), according to the operand size. disp x 2 . EA
Longword:
, Rn + disp x 4
disp Rn + disp x 1/2/4 | ~ EA
(zero-extended)
Indexed @ (RO, Rn) Effective address is sum of register Rn and RO Rn + RO - EA
register contents.
indirect
GBR indirect @(disp:8, Effective address is register GBR contents with Byte: GBR +
with GBR) 8-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), \yord: GBR +
or 4 (longword), according to the operand size. disp x 2 . EA
Longword:
GBR + di
disp _GBR 4 L EA P
(zero-extended) + disp x 1/2/4
Indexed @ (RO, GBR) Effective address is sum of register GBR and RO GBR + RO -
GBR indirect contents. EA

GBR + RO

Rev. 1.0, 08/98, page 132 of 385

HITACHI

Table 7.1 Addressing Modes and Effective Addresses (cont)

Addressing Instruction Calculation
Mode Format Effective Address Calculation Method Formula
PC-relative @(disp:8, Effective address is PC+4 with 8-bit displacement Word: PC + 4
with PC) disp added. After disp is zero-extended, it is +dispx2 -
displacement multiplied by 2 (word), or 4 (longword), according EA
to the operand size. With a longword operand, Longword:
the lower 2 bits of PC are masked. PC &
HEFFEFERC
+4 +disp x 4
- EA
H'FFFFFFFC
PC + 4 + disp
x 2
or PC &
: H'FFFFFFFC
disp .
(zero-extended) t4tdispx4
* With longword operand
PC-relative disp:8 Effective address is PC+4 with 8-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC + 4 + disp x 2

(sign-extended)

Rev. 1.0, 08/98, page 133 of 385
HITACHI

Table 7.1 Addressing Modes and Effective Addresses (cont)

Addressing Instruction Calculation

Mode Format Effective Address Calculation Method Formula

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC + 4 + disp x 2

(sign-extended)

Rn PC+4 +Rn
- Branch-
Target
Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or —
XOR instruction is zero-extended.
#imm:8 8-bit immediate data imm of MOV, ADD, or —
CMP/EQ instruction is sign-extended.
#imm:8 8-bit immediate data imm of TRAPA instructionis —

zero-extended and multiplied by 4.

Note: For the addressing modes below that use a displacement (disp), the assembler
descriptions in this manual show the value before scaling (x1, x2, or x4) is performed
according to the operand size. This is done to clarify the operation of the chip. Refer to the
relevant assembler notation rules for the actual assembler descriptions.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement

@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

Rev. 1.0, 08/98, page 134 of 385
HITACHI

7.3 Instruction Set

Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2 Notation Used in Instruction List

Item Format Description
Instruction OP.Sz SRC, DEST OFP: Operation code
mnemonic Sz: Size
SRC: Source
DEST: Source and/or destination operand
Summary of o, e Transfer direction
operation (xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
0 Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift
Instruction code MSB -~ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: RO, FRO
0001: R1, FR1
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DRO, XD0O, RO_BANK
001: DR2, XD2, R1_BANK
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FVO
01: Fv4
10: Fv8
11: FV12
iiii: Immediate data
dddd: Displacement

Privileged mode

“Privileged” means the instruction can only be executed
in privileged mode.

T bit

Value of T bit after —: No change

instruction execution

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

Rev. 1.0, 08/98, page 135 of 385

HITACHI

Table 7.3

Fixed-Point Transfer Instructions

Instruction Qperation Instruction Code Privileged T Bi

MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii —

MOV.W |@(disp,PC),Rn (disp x 2 + PC + 4) - sign 1001nnnndddddddd |—
extension - Rn

MOV.L @(disp,PC),Rn (disp x 4 + PC & H'FFFFFFFC [1101nnnndddddddd ~ |—
+4) -~ Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmmmO011 |—

MOV.B Rm,@Rn Rm - (Rn) 0010nNnNNmMmmmO000 |—

MOV.W RmM,@Rn Rm - (Rn) 0010nnNnNnmmmmO001 |—

MOV.L Rm,@Rn Rm - (Rn) 0010nnNnNmmmmO010 |—

MOV.B @Rm,Rn (Rm) - sign extension » Rn 0110nnNnnmmmmO000 |—

MOV.W @Rm,Rn (Rm) - sign extension » Rn 0110nnnnmmmmO001 [—

MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO0010 (—

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmmO100 (—

MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmmmO101 [—

MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnmmmmO0110 (—

MOV.B @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmmO2100 (—
Rm+1 - Rm

MOV.W |@Rm+,Rn (Rm) - sign extension - Rn, |0110nnnnmmmmO0101 [—
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmmO0110 (—

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd ~ [—

MOV.W |RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd [—

MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmmdddd |—

MOV.B @(disp,Rm),R0O (disp + Rm) - sign extension 10000100mmmmdddd [—
- RO

MOV.W @(disp,Rm),R0O (disp x 2 + Rm) - sign 10000101mmmmdddd [—
extension - RO

MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101nnnnmmmmdddd |—

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNNNMmMmMmO100 (—

MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNNMmMmmO101 (—

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNNMmMmMmO110 (—

MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnNnNnmMmMmm1100 (—
- Rn

MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnNnNnmmmm1101 (—
- Rn

MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000nnNnNMmMmMm1110 (—

Rev. 1.0, 08/98, page 136 of 385

HITACHI

Table 7.3

Fixed-Point Transfer Instructions (cont)

Instruction Qperation Instruction Code Privileged T Bi

MOV.B RO,@(disp,GBR) |RO - (disp + GBR) 11000000dddddddd ~ [—

MOV.W [RO,@(disp,GBR) |RO - (disp x 2 + GBR) 11000001dddddddd |[—

MOV.L RO,@(disp,GBR) |RO - (disp x 4 + GBR) 11000010dddddddd ~ [—

MOV.B @(disp,GBR),R0 |(disp + GBR) - 11000100dddddddd [—
sign extension —» RO

MOV.W |@(disp,GBR),RO |(disp x 2 + GBR) — 11000101dddddddd ~ [—
sign extension —» RO

MOV.L @(disp,GBR),R0 |(disp x 4 + GBR) - RO 11000110dddddddd ~ [—

MOVA @(disp,PC),R0O disp x 4 + PC & H'FFFFFFFC |11000111dddddddd |—
+4 - RO

MOVT Rn T -5 Rn 0000nnnn00101001 —

SWAP.B |Rm,Rn Rm - swap lower 2 bytes 0110nnnnmmmm31000 (—
- REG

SWAP.W |Rm,Rn Rm - swap upper/lower 0110nnnnmmmm31001 (—
words - Rn

XTRCT Rm,Rn Rm:Rn middle 32 bits —~ Rn 0010nnnnmmmm1101 [—

HITACHI

Rev. 1.0, 08/98, page 137 of 385

Table 7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm1100 — —

ADD #imm,Rn Rn +imm - Rn 0111nnnniiiiiiii — —

ADDC Rm,Rn Rn+Rm+T - Rn,carry -~ T 0011lnnnnmmmm1110 — Carry

ADDV Rm,Rn Rn+Rm - Rn, overflow - T 0011nnnnmmmm1111 — Overflow

CMP/EQ #imm,RO WhenRO=imm,1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result

CMP/EQ Rm,Rn WhenRn=Rm,1 - T 0011nnnnmmmmO000 — Comparison
Otherwise, 0 - T result

CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmmmO0010 — Comparison
1.T result
Otherwise, 0 - T

CMP/GE Rm,Rn When Rn = Rm (signed), 1 -~ T 0011nnnnmmmmO0011 — Comparison
Otherwise, 0 - T result

CMP/HI Rm,Rn When Rn > Rm (unsigned), 0011nnnnmmmmO0110 — Comparison
1.T result
Otherwise, 0 - T

CMP/GT Rm,Rn When Rn > Rm (signed), 1 - T 001lnnnnmmmmO0111 — Comparison
Otherwise, 0 - T result

CMP/PZ Rn WhenRn=0,1 - T 0100nnnn00010001 — Comparison
Otherwise, 0 - T result

CMP/PL Rn WhenRNn>0,1 - T 0100nnnn00010101 — Comparison
Otherwise, 0 - T result

CMP/STR Rm,Rn When any bytes are equal, 0010nnnnmmmm31100 — Comparison
1.T result
Otherwise, 0 - T

DIV1 Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmmmO0100 — Calculation

result

DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmmO111 — Calculation
MSB of Rm - M, M*\Q - T result

DIVOU 0 - M/QIT 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 0011nnnnmmmm1101 — —
32 x 32 - 64 bits

DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnhnnmmmmO0101 — —
32 x 32 - 64 bits

DT Rn Rn-1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1.T result
WhenRn#0,0 - T

EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmm1110 — —

byte - Rn

Rev. 1.0, 08/98, page 138 of 385

HITACHI

Table 7.4 Arithmetic Operation Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmm1111 — —
word -~ Rn
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmm31100 — —
byte - Rn
EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmmm31101 — —
word - Rn
MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - 0000nnnnmmmm1111 — —
MAC
Rn+4 . Rn,Rm+4 - Rm
32 x 32 + 64 - 64 bits
MAC.W @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - 0100nnnnmmmm1111 — —
MAC
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 — 64 bits
MUL.L Rm,Rn Rn x Rm - MACL 0000nNnNnNnmmmmO111 — —
32 x 32 - 32 hits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmm1111 — —
16 x 16 - 32 bhits
MULUW Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnmmmm1110 — —
16 x 16 - 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 — —
NEGC Rm,Rn 0-Rm-T - Rn,borrow - T 0110nnnnmmmm1010 — Borrow
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm21000 — —
SuBC Rm,Rn Rn—Rm-T - Rn, borrow - T 0011nnnnmmmm1010 — Borrow
SUBV Rm,Rn Rn—-Rm - Rn, underflow -~ T 0011nnnnmmmm1011 — Underflow

Rev. 1.0, 08/98, page 139 of 385

HITACHI

Table 7.5 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 — —
AND #imm,RO RO & imm - RO 11001001iiiiiiii — —
AND.B #imm,@(R0,GBR) (RO + GBR) & imm - (RO + 11001104iiiiiiii — —
GBR)
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmoO111 — —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 — —
OR #imm,RO RO | imm - RO 1100101 1iiiiiiii — —
OR.B #imm,@(R0O,GBR) (RO + GBR) |imm - (RO + GBR) 110011 11iiiiiii —
TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result

Otherwise, 0 - T
In both cases, 1 -~ MSB of (Rn)

TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnmmmm31000 — Test result
1T
Otherwise, 0 - T

TST #imm,R0O RO & imm; when result = 0, 11001000iiiiiiii — Test result
1T
Otherwise, 0 - T

TST.B #mm,@(R0,GBR) (RO + GBR) & imm; when result =11001100iiiiiiii — Test result
0,1-T
Otherwise, 0 - T

XOR Rm,Rn RnORmM - Rn 0010nnnnmmmm1010 — —

XOR #mm,R0O RO Oimm - RO 1100101 Qiiiiiiii — —

XOR.B #mm,@(R0,GBR) (RO + GBR) Oimm - (RO + 1100111 Qiiiiiiii — —
GBR)

Rev. 1.0, 08/98, page 140 of 385
HITACHI

Table 7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit
ROTL Rn T « Rn -« MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — LSB
ROTCL Rn T<Rn T 0100nnnn00100100 — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101 — LSB
SHAD Rm,Rn When Rn =0, Rn<<Rm - Rn 0100nnnnmmmm1100 — —

When Rn <0, Rn>>Rm - [MSB

- Rn]
SHAL Rn T<«Rn<0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLD Rm,Rn When Rn =0, Rn<<Rm - Rn 0100nnnnmmmm1101 — —

When Rn <0, Rn>>Rm -

[0 - Rn]
SHLL Rn T<«Rn-0 0100nnnn00000000 — MSB
SHLR Rn 0O-Rn-T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 5 Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 . Rn 0100nnnn00001001 — —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —

Rev. 1.0, 08/98, page 141 of 385
HITACHI

Table 7.7 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BF label When T =0, disp x2 + PC + 10001011dddddddd — —
4 ., PC
When T =1, nop
BF/S label Delayed branch; when T =0, disp10001111dddddddd — —

x2+PC+4 5 PC
When T =1, nop

BT label When T=1, dispx2+PC + 10001001dddddddd — —
4 ., PC
When T =0, nop

BT/S label Delayed branch; when T = 1, disp10001101dddddddd — —

x2+PC+4 5 PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd ~ — —
PC+4 - PC

BRAF Rn Rn+PC+4 - PC 0000nnNnNn00100011 e e

BSR label Delayed branch, PC +4 - PR, 101ldddddddddddd — —
dispx2+PC+4 - PC

BSRF Rn Delayed branch, PC + 4 -, PR, 0000nnnn00000011 — —
Rn+PC+4 - PC

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC +4 - PR, 0100nnnn00001011 — —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — —

Rev. 1.0, 08/98, page 142 of 385
HITACHI

Table 7.8

System Control Instructions

Instruction Operation Instruction Code Privileged T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDC Rm,SR Rm - SR 0100mmmmO00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 — —
LDC Rm,VBR Rm - VBR 0100mmmmO00101110 Privileged ——
LDC Rm,SSR Rm - SSR 0100mmmmO00111110 Privileged ——
LDC Rm,SPC Rm - SPC 0100mmmmO01001110 Privileged ——
LDC Rm,DBR Rm - DBR 0100mmmm311111010 Privileged ——
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to07) 0100mmmm3i1nnn1110 Privileged ——
LDC.L @Rm+,SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) -~ GBR,Rm+4 - Rm 0100mmmmO00010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 - Rm 0100mmmmO00100111 Privileged —
LDC.L @Rm+,SSR (Rm) -~ SSR,Rm+4 - Rm 0100mmmmO00110111 Privileged ——
LDC.L @Rm+,SPC (Rm) -~ SPC,Rm+4 - Rm 0100mmmmO01000111 Privileged ——
LDC.L @Rm+,DBR (Rm) - DBR,Rm+4 - Rm 0100mmmm11110110 Privileged ——
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100mmmm1nnn0111 Privileged ——
Rm+4 - Rm
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 — —
LDS Rm,MACL Rm - MACL 0100mmmmO00011010 — —
LDS Rm,PR Rm - PR 0100mmmmO00101010 — —
LDS.L @Rm+,MACH (Rm) -~ MACH,Rm+4 -~ Rm 0100mmmm00000110 — —
LDS.L @Rm+,MACL (Rm) - MACL,Rm+4 -~ Rm 0100mmmm00010110 — —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 - Rm 0100mmmmO00100110 — —
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged ——
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnNNn11000011 — —
cache block)
NOP No operation 0000000000001001 — —
OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
OCBP @Rn Writes back and invalidates 0000nNNn10100011 — —
operand cache block
OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —
PREF @Rn (Rn) - operand cache 0000nnnn10000011 — —
RTE Delayed branch, SSR/SPC - 0000000000101011 Privileged —

SR/PC

HITACHI

Rev. 1.0, 08/98, page 143 of 385

Table 7.8 System Control Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

SETS 1-5S 0000000001011000 — —
SETT 1T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
STC SR,Rn SR - Rn 0000nnNn00000010 Privileged — —
STC GBR,Rn GBR - Rn 0000nnnn00010010 — e
STC VBR,Rn VBR - Rn 0000nnNnNn00100010 Privileged — —
STC SSR,Rn SSR - Rn 0000nnNnNn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnNnNn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnNnNn00111010 Privileged ——
STC DBR,Rn DBR - Rn 0000nnNnn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK -~ Rn(m=0to7) 0000nNnNn1mmmO010 Privileged ——
STC.L SR,@-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged — —
STC.L GBR,@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@-Rn Rn-4 - Rn,
Rm_BANK - (Rn) (m=0to7)

0100nnnn1mmmO0011 Privileged

STS MACH,Rn MACH - Rn 0000nnnNn00001010 — —
STS MACL,Rn MACL - Rn 0000nnnNn00011010 — —
STS PR,Rn PR - Rn 0000nnnNn00101010 — —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
TRAPA #imm PC+2 - SPC, SR - SSR, 1100001 ZLiiiiiiii — —

#imm << 2 -, TRA,
H'160 - EXPEVT,
VBR + H'0100 - PC

Rev. 1.0, 08/98, page 144 of 385
HITACHI

Table 7.9

Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 — —
FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 — —
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmm1000 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 1111nnnnmmmmO0110 — —
FMOV.S @Rm+,FRn (Rm) - FRn,Rm+4 - Rm 111lnnnnmmmm1001 — —
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmmm1011 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnmmmmO0111 — —
FMOV DRm,DRn DRm - DRn 1111nnnOMmMmO01100 — —
FMOV @Rm,DRn (Rm) - DRn 1111nnnOMmMMm1000 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOMmMmmO0110 — —
FMOV @Rm+,DRn (Rm) - DRn,Rm+8 -~ Rm 1111nnnOmMmmm1001 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmmO01010 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1111nnnnmmm01011 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnmmmO00111 — —
FLDS FRm,FPUL FRm - FPUL 1111mmmmo00011101 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FABS FRn FRn & H'7FFF FFFF -~ FRn 1111nnnn01011101 — —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnmmmmO000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1111nnnnmmmmO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn >FRm,1 - T 1111nnnnmmmmO0101 — Comparison
Otherwise, 0 - T result

FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmmmO0011 — —
FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 1111nnnnmmmm1110 — —
FMUL FRm,FRn FRN*FRm - FRn 1111nnnnmmmmO0010 — —
FNEG FRn FRn 0OH'80000000 - FRn 1111nnnn01001101 — —
FSQRT FRn VvFRn - FRn 1111nnnn01101101 — —
FSUB FRm,FRn FRn-FRmM - FRn 1111nnnnmmmmO001 — —
FTRC FRm,FPUL (long) FRm - FPUL 1111mmmm00111101 — —

Rev. 1.0, 08/98, page 145 of 385

HITACHI

Table 7.10 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FABS DRn DRn & H'7FFF FFFF FFFF FFFF 1111nnn001011101 — —
- DRn
FADD DRm,DRn DRn + DRm - DRn 1111nnnOMmMmO0000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1111nnnOMmMmO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT DRm,DRn When DRn >DRm, 1 - T 1111nnnOMmMmO00101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOMmMmO0011 — —
FCNVDS DRm,FPUL double_to_floatiDRm] - FPUL 1111mmm010111101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] -~ DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL — DRn 1111nnn000101101 — —
FMUL DRm,DRn DRn *DRm — DRn 1111nnnOMmMmO0010 — —
FNEG DRn DRn ” H'8000 0000 0000 0000 - 1111nnNn001001101 — —
DRn
FSQRT DRn VvDRn - DRn 1111nnn001101101 — —
FSUB DRm,DRn DRn -DRm - DRn 1111nnnOMmMmO0001 — —
FTRC DRm,FPUL (long) DRm — FPUL 1111mmm000111101 — —
Table 7.11 Floating-Point Control Instructions
Instruction Operation Instruction Code Privileged T Bit
LDS Rm,FPSCR Rm - FPSCR 0100mmmm01101010 — —
LDS Rm,FPUL Rm - FPUL 0100mmmm01011010 — —

LDS.L @Rm+,FPSCR

(Rm) - FPSCR, Rm+4 -~ Rm 0100mmmm01100110

LDS.L @Rm+,FPUL

(Rm) - FPUL, Rm+4 - Rm 0100mmmm01010110

STS FPSCR,Rn

FPSCR - Rn 0000nnNNN01101010

STS FPUL,Rn

FPUL - Rn 0000nnNnNn01011010

STS.L FPSCR,@-Rn

Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010

STS.L FPUL,@-Rn

Rn—4 _ Rn, FPUL — (Rn) 0100nNNN01010010

Rev. 1.0, 08/98, page 146 of 385

HITACHI

Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Qperation Instruction Code Privileged T Bi
FMOV |DRm,XDn DRmM - XDn 1111nnn1mmmO01100 |—
FMOV [XDm,DRn XDm - DRn 1111nnnOMmm11100 |—
FMOV [XDm,XDn XDm - XDn 1111nnn1lmmm11100 |—
FMOV [@Rm,XDn (Rm) - XDn 1111nnn1mmmm1000 |—
FMOV [@Rm+,XDn (Rm) - XDn, Rm+8 - Rm 1111nnn1lmmmm1001 |—
FMOV [@(RO,Rm),DRn [(RO+Rm) - DRn 1111nnn1mmmmO0110 |—
FMOV [XDm,@Rn XDm - (Rn) 1111nnnnmmm311010 |—
FMOV [XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmmm11011 |—
FMOV [XDm,@(RO,Rn) [XDm - (RO+Rn) 1111nnnnmmm10111 |—
FIPR FVm,Fvn inner_product [FVm, FVn] - 1111nnmm11101101 |—
FR[N+3]
FTRV XMTRX,FVn transform_vector [XMTRX, FVn] [1111nn0111111101 |—
- FVn
FRCHG ~FPSCR.FR - SPFCR.FR 1111101111111101 |—
FSCHG ~FPSCR.SZ - SPFCR.SZ 1111001111111101 |—

Rev. 1.0, 08/98, page 147 of 385

HITACHI

Rev. 1.0, 08/98, page 148 of 385
HITACHI

Section 8 Pipelining

The SH7750 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel. The
execution cycles depend on the implementation of a processor. Definitions in this section may
not be applicable to SH-4 Series models other than the SH7750.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages:
instruction fetch (l), decode and register read (D), execution (EX/SX/FO/F1/F2/F3), data access
(NA/MA), and write-back (S/FS). An instruction is executed as a combination of basic pipelines.
Figure 8.2 shows the instruction execution patterns.

Rev. 1.0, 08/98, page 149 of 385
HITACHI

1. General Pipeline

| D EX NA S
« Instruction fetch « Instruction * Operation * Non-memory » Write-back
decode data access

Issue

« Register read

« Destination address calculation
for PC-relative branch

2. General Load/Store Pipeline

| D EX MA S
« Instruction fetch < Instruction « Address « Memory data * Write-back
decode calculation access

« Issue
« Register read

3. Special Pipeline

| D SX NA S
« Instruction fetch « Instruction * Operation * Non-memory * Write-back
decode data access

* Issue
* Register read

4. Special Load/Store Pipeline

| D SX MA S
« Instruction fetch < Instruction « Address * Memory data « Write-back
decode calculation access

* Issue
* Register read

5. Floating-Point Pipeline

| D F1 F2 FS
« Instruction fetch < Instruction « Computation 1 « Computation 2+ Computation 3
decode « Write-back

« Issue
* Register read

6. Floating-Point Extended Pipeline

| D FO F1 F2 FS
« Instruction fetch < Instruction « Computation 0 < Computation1 + Computation2 + Computation 3
decode » Write-back

* Issue
* Register read

7. FDIVIFSQRT Pipeline

Computation: Takes several cycles

Figure 8.1 Basic Pipelines

Rev. 1.0, 08/98, page 150 of 385
HITACHI

. 1-step operation: 1 issue cycle

EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,

LDS to FPUL, STS from FPUL/FPSCR, FLDIO, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

[17 [T o [ex | na [s |

. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

[T o T ex [ma | s |

. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

[0 T o T sx | wma] s |

. JMP, RTS, BRAF: 2 issue cycles

[+ [b EX NA s
D EX NA s |

. TST.B: 3 issue cycles

[v T o SX MA s
D SX NA s
D SX NA s |

. AND.B, OR.B, XOR.B: 4 issue cycles

[7 [o SX MA s
D SX NA s
D SX NA s
D || sx MA s |

. TAS.B: 5 issue cycles

[7 T o EX MA s
D EX MA S
D EX NA S
D EX NA S
D || EX MA s |
. RTE: 5 issue cycles
[+ [o EX NA s
D EX NA S
D EX NA S
D EX NA S
D] EX NA s |
. SLEEP: 4 issue cycles
[7 T o EX NA s
D EX NA S
D EX NA S
D | EX NA s |

Figure 8.2 Instruction Execution Patterns

Rev. 1.0, 08/98, page 151 of 385
HITACHI

10.

OCBI: 1 issue cycle

C 7 T o [Ex [wa s |
MA
11. OCBP, OCBWSB: 1 issue cycle
[+ T o [ex [wa s |
[L_wva
MA
MA
MA
12. MOVCA.L: 1 issue cycle
T T b [ex [wa s |
MA
MA
MA
MA
MA
MA
13. TRAPA: 7 issue cycles
[17 T b EX NA s
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA
14. CR definition: 1 issue cycle
LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR
[+ [b [Ex Na [s |
[SX
|| SX
15. LDC to GBR: 3 issue cycles
[T o EX NA [s]
D SX
D || SX
16. LDC to SR: 4 issue cycles
[T | b EX NA | s]
D SX
D SX
D]| sx
17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle
[+ [o [Eex MA [s |
SX
| SX
18. LDC.L to GBR: 3 issue cycles
[T o EX MA [s]
D SX
D | SX

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 1.0, 08/98, page 152 of 385
HITACHI

19

20

21

22

23

. LDC.L to SR: 4 issue cycles

[T] o EX MA [s |
D SX
D SX
LD | sx
. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[+ [o SX NA s
D SX NA s |
. STC.L from SGR: 3 issue cycles
[v T o SX NA s
D SX NA S
D SX NA s |
. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[+ [o SX NA s
D SX MA s |
. STC.L from SGR: 3 issue cycles
[7 [o SX NA S
D SX NA S
D SX MA s |

24. LDS to PR, JSR, BSRF: 2 issue cycles

26.

27.

[T [o EX Na [s |
Lo SX
[sXx
25. LDS.L to PR: 2 issue cycles
[T | b EX Ma | s |
Lo SX
[sx
STS from PR: 2 issue cycles
[7 [o SX NA s
D SX NA s |
STS.L from PR: 2 issue cycles
[7 [o SX NA s
D SX MA s |

28.

20.

30.

MACH/L definition: 1 issue cycle
CLRMAC, LDS to MACH/L
[+ [b [ex NA [s]
F1
[F1 [F2 T Fs]
LDS.L to MACHY/L: 1 issue cycle
[+ [o [Eex MA [s |
I F1
[FA T F2 T Fs]

STS from MACHJ/L: 1 issue cycle
[T o T"ex [na [s]

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 1.0, 08/98, page 153 of 385
HITACHI

31.

32.

33.

34.

35.

36.

37.

38.

39.

STS.L from MACHJ/L: 1 issue cycle

[T o | ex | ma | s]
LDS to FPSCR: 1 issue cycle
[1 [b [ex NA | s |
[L_FL
F1
F1
LDS.L to FPSCR: 1 issue cycle
[+ [b [Ex Ma | s |
[L_F1
F1
F1

Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

[7 [o EX NA (CPL)
D EX NA s |
f1 (FPU)
f1
f1
1| F2 | Fs |

MAC.W, MAC.L: 2 issue cycles

[1] b EX MA s (CPU)
D EX MA s |
f1 (FPU)
f1
f1
f1 | F2 | Fs]

Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

[7 T o T 1 | r2 | Fs]

Single-precision FDIV/SQRT: 1 issue cycle

[T [o F1_ | r2 | Fs |
F3

[R F2 | Fs

Double-precision floating-point computation 1: 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC

[7] b F1 F2 FS
d F1 F2 Fs |

Double-precision floating-point computation 2: 1 issue cycle
FADD, FMUL, FSUB

[7 [T o F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
F1 F2 FS

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 1.0, 08/98, page 154 of 385

HITACHI

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

[+ [b F1 F2 Fs
D F1 F2 Fs |

41. Double-precision FDIV/SQRT: 1 issue cycle

FDIV, FSQRT
[+ [b F1 F2 FS
d F1 F2 |
F3
[kA F2 F3
F1 F2 F3
) F1 F2 F3
42. FIPR: 1 issue cycle
L v I o [T o [T | F2] Fs |
43. FTRV: 1 issue cycle
[+ [o FO F1 = Fs
d FO F1 F2 FS
d FO F1 F2 ES
d FO F1 F2 Fs |
Notes: : Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.
: Locks D-stage
[d__|: Register read only
|| ?? : Locks, but no operation is executed.
. Can overlap another f1, but not another F1.

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 1.0, 08/98, page 155 of 385
HITACHI

8.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of instructions in terms of
groups. For example, ADD in the EX group and BRA in the BR group can be executed in
parallel.

Table 8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #imm,R0O CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0O
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn
2. EX Group

ADD #imm,Rn MOVT Rn SHLL2 Rn
ADD Rm,Rn NEG Rm,Rn SHLLS8 Rn
ADDC Rm,Rn NEGC Rm,Rn SHLR Rn
ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn
AND #imm,R0O OR #imm,RO SHLR2 Rn
AND Rm,Rn OR Rm,Rn SHLRS8 Rn
DIVOS Rm,Rn ROTCL Rn SUB Rm,Rn
DIvouU ROTCR Rn SUBC Rm,Rn
DIVl Rm,Rn ROTL Rn SUBV Rm,Rn
DT Rn ROTR Rn SWAP.B Rm,Rn
EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn
EXTS.W Rm,Rn SHAL Rn XOR #imm,R0O
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn
MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 [SHLL16 RN

3. BR Group

BF disp BRA disp BT disp
BF/S disp BSR disp BT/S disp

Rev. 1.0, 08/98, page 156 of 385
HITACHI

Table 8.1

Instruction Groups (cont)

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L RO,@(disp,GBR)
FABS FRn FMQOV.S FRm,@(RO,Rn) [MOV.L Rm,@(disp,Rn)
FLDIO FRn FMOV.S FRm,@-Rn MOV.L Rm,@(RO,Rn)
FLDI1 FRn FMOV.S FRmM,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMOV @(RO,Rm),DRn |FNEG FRN MOV.W @(disp,GBR),R0
FMOV @(RO,Rm),XDn |[FSTS FPUL,FRn MOV.W @(disp,PC),Rn
FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0O
FMOV @Rm,XDn MOV.B @(disp,GBR),R0 |MOV.W @(RO,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 [MOV.W @Rm,Rn
FMOV @Rm+,XDn MOV.B @(RO,Rm),Rn MOV.W @Rm+,Rn
FMOV DRm,@(RO,Rn) |MOV.B @Rm,Rn MOV.W RO,@(disp,GBR)
FMOV DRmM,@-Rn MOV.B @Rm+,Rn MOV.W RO,@(disp,Rn)
FMOV DRm,@Rn MOV.B RO,@(disp,GBR) |MOV.W Rm,@(RO,Rn)
FMOV DRmM,DRN MOV.B RO,@(disp,Rn) [MOV.W Rm,@-Rn
FMOV DRm,XDn MOV.B Rm,@(RO,Rn) MOV.W Rm,@Rn
FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L RO,@Rn

FMOV XDm,@(RO,Rn) |MOV.B Rm,@Rn OCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 |OCBP @Rn

FMOV XDm,@Rn MOV.L @(disp,PC),Rn |OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn [PREF @Rn

FMOV XDm,XDn MOV.L @(RO,Rm),Rn STS FPUL,Rn
FMOV.S @(RO,Rm),FRn |MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

Rev. 1.0, 08/98, page 157 of 385

HITACHI

Table 8.1 Instruction Groups (cont)

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC FRO,FRm,FRn [FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL
FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRn FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

Rev. 1.0, 08/98, page 158 of 385

HITACHI

Table 8.1

Instruction Groups (cont)

6. CO Group

AND.B #imm,@(R0O,GBR) |LDS Rm,FPSCR STC SR,Rn

BRAF Rm LDS Rm,MACH STC SSR,Rn

BSRF Rm LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn

LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0O,GBR) |STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn
LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn
LDC.L @Rm+,Rp_BANK [STC DBR,Rn TAS.B @RnN

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(RO,GBR)
LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0O,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Rev. 1.0, 08/98, page 159 of 385

HITACHI

Table 8.2 Parallel-Executability

2nd Instruction
MT EX BR LS FE (6{0)

1st MT o} 0} 0} 0} 0} X
Instruction

EX 0} X 0} 0} 0} X

BR O 0} X 0} o X

LS 0} O 0} X 0} X

FE O O O 0} X X

(6{0) X X X X X X

O: Can be executed in parallel
X: Cannot be executed in parallel

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware
unit operates on one of these clocks, as follows:

» |-clock: CPU, FPU, MMU, caches
» B-clock: External bus controller
» P-clock: Peripheral units

The frequency ratios of the three clocks are determined with the frequency control register
(FRQCR). In this section, machine cycles are based on the I-clock unless otherwise specified.
For details of FRQCR, see section 10, Clock Oscillation Circuits.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or
freeze are not considered in this table.

* Issue rate: Interval between the issue of an instruction and that of the next instruction

» Latency: Interval between the issue of an instruction and the generation of its result
(completion)

» Instruction execution pattern (see figure 8.2)

» Locked pipeline stages

» Interval between the issue of an instruction and the start of locking

» Lock time: Period of locking in machine cycle units

Rev. 1.0, 08/98, page 160 of 385
HITACHI

The instruction execution sequence is expressed as a combination of the execution patterns
shown in figure 8.2. One instruction is separated from the next by the number of machine cycles
for its issue rate. Normally, execution, data access, and write-back stages cannot be overlapped
onto the same stages of another instruction; the only exception is when two instructions are
executed in parallel under parallel-executability conditions. Refer to (a) through (d) in figure 8.3
for some simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interval
between the execution of two instructions with an interdependent relationship. When there is
interdependency between two instructions fetched simultaneously, the latter of the two is stalled
for the following number of cycles:

¢ (Latency) cycles when there is flow dependency (read-after-write)

¢ (Latency - 2) cycles when there is output dependency (write-after-write)

¢ 1 or 2 cycles when there is anti-flow dependency (write-after-read), as in the following cases:
O FTRV is the preceding instruction (1 cycle)
O A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depending
on the combination of sequential instructions (figure 8.3 (e)).

* When a floating-point (FP) computation is followed by an FP register store, the latency of
the FP computation may be decreased by 1 cycle.

» Ifthere is a load of the shift amount immediately before an SHAD/SHLD instruction, the
latency of the load is increased by 1 cycle.

» If an instruction with a latency of less than 2 cycles, including write-back to an FP register, is
followed by a double-precision FP instruction, FIPR, or FTRV, the latency of the first
instruction is increased to 2 cycles.

The number of cycles in a pipeline stall due to flow dependency will vary depending on the
combination of interdependent instructions or the fetch timing (see figure 8.3. (e)).

For the stall cycles of an instruction with output dependency, the longest latency to the last
write-back among all the destination operands must be applied instead of “latency-2" (see figure
8.3 (f)). A stall due to output dependency with respect to FPSCR, which reflects the result of an
FP operation, never occurs. For example, when FADD follows FDIV with no dependency
between FP registers, FADD is not stalled even if both instructions update the cause field of
FPSCR.

Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL,
FSUB, or FTRV and a following FMOV, FLDIO, FLDI1, FABS, or FNEG. See figure 8.3 (Q).

Rev. 1.0, 08/98, page 161 of 385
HITACHI

If an executing instruction locks any resource—i.e. a function block that performs a basic
operation—a following instruction that happens to attempt to use the locked resource must be
stalled (figure 8.3 (h)). This kind of stall can be compensated by inserting one or more
instructions independent of the locked resource to separate the interfering instructions. For
example, when a load instruction and an ADD instruction that references the loaded value are
consecutive, the 2-cycle stall of the ADD is eliminated by inserting three instructions without
dependency. Software performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

¢ Instruction TLB miss: a penalty of 7 CPU clocks
* Instruction access to external memory (instruction cache miss, etc.)

« Data access to external memory (operand cache miss, etc.): a penalty of 2 CPU clocks + 3
bus clocks

« Data access to a memory-mapped control register. The penalty differs from register to
register, and depends on the kind of operation (read or write), the clock mode, and the bus
use conditions when the access is made.

During the penalty cycles of an instruction TLB miss or external instruction access, no

instruction is issued, but execution of instructions that have already been issued continues. The
penalty for a data access is a pipeline freeze: that is, the execution of uncompleted instructions is
interrupted until the arrival of the requested data. The number of penalty cycles for instruction
and data accesses is largely dependent on the user’'s memory subsystems.

Rev. 1.0, 08/98, page 162 of 385
HITACHI

(a) Serial execution: non-parallel-executable instructions

(b)

(©)

(d)

SHAD RO,R1
ADD R2,R3
next

Parallel execution: parallel-executable and no dependency

ADD R2,R1
MOV.L @R4,R5

-<+— 1issue cycle

D EX

NA

D

EX

NA

s |

<«— 1stall cycle

<— 1lissue cycle

Issue rate: multi-step instruction

AND.B#1,@(RO,GBR) [|

MOV R1,R2
next

Branch

BT/S L_far
ADD RO,R1
SUB R2,R3

BT/S L_far
ADD RO,R1

L_far

BT L_skip
ADD #1,R0
L_skip:

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

| D EX | NA S
| D EX | MA| s
- » 4 issue cycles
[D [sx [ma] s
D SX NA S
D SX NA S
D SX MA
L] T Y s]
< o
|
4 stall cycles —
| D EX NA S
| D EX NA S
I D | Ex| Nna]| s |

<+——— > 2-cycl

D EX

NA

S

EX

O

NA

S

<«— 1stallcycle

EX] Nna] s]

D
D

| D

No stall

e latency for I-stage of branch destination

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the I-
stage of the branch destination is not
stalled if the displacement is zero.

Figure 8.3 Examples of Pipelined Execution

HITACHI

Rev. 1.0, 08/98, page 163 of 385

(e) Flow dependency

Zero-cycle latency

The following instruction, ADD, is not

MOV RO,R1 ! D e EX | NA| S stalled when executed after an instruction
ADD R2R1 ! D EX| NA] S with zero-cycle latency, even if there is
dependency.
<—>» 1-cycle latency
ADD R2 R1 | D EX NA S ADD and MOV.L are not executed in
MOV.L @él R1 | i D EX MA s | parallel, since MOV.L references the result
next ' ' - of ADD as its destination address.
1 stall cycle

<«——» 2-cycle latency
MOV.L @R1,R1 | | D EX MA S Because MOV.L and ADD are not fetched
ADD RO,R1 | D [+—>{A\EX NA [s] simultaneously in this example, ADD is
next | 1 stall cycle stalled for only 1 cycle even though the

4 latency of MOV.L is 2 cycles.
<+—— - 2-cycle latency
<«—>» 1-cycle increase
MOV.L @R1,R1 [D EX MA S Due to the flow dependency between the
SHAD R1,R2 | D d EX | NA | s | load and the SHAD/SHLD shift amount,
next | -— the latency of the load is increased to 3
2 stall cycles cycles.

<+—— > 4-cycle latency for FPSCR
FADD FR1,FR2 | | D F1 F2 FS
STS FPUL,R1 | D EX NA S
STS FPSCR,R2 > >N D | Ex[NA[s |

2 stall cycles

< » 7-cycle latency for lower FR

< » 8-cycle latency for upper FR
FADD DRODR2 | ! | D[F1] F2 [Fs

d F1 | F2 | Fs
d F1l F2 ES
d F1 F2 FS
d F1 F2 ES. | FR3 write
F1 F2 N\ FS \|FR2 write
Y

FMOV FR3,FR5 D EX }, NA S
FMOV FR2,FR4 D EX NA S |

<+———» 3-cycle latency for lower FR

» 4-cycle latency for upper FR

FLOAT FPUL,DRO | | | D F1 E2 ES \| FR1 write The latency of FLOAT is decreased by 1
FMOV.S FR1,@-R15 d F1 2 FS | FRO write cycle, only if followed by a lower FR store.
| D VEX MA] s | This decrease does not apply to an upper
FR store.
Zero-cycle latency
<+— > 3-cycle increase
FLDI1 FR3 I D | ExX] Na] s
FIPR FVO,FV4 I D d Fo [rr [k2] Fs]
<« » 3stallcycles
<«———» 2-cycle latency
<«—» l-cycle increase
FMOV @R1,XD14 | D EX | MA S
FTRV XMTRX,FVO | D d FO F1 F2 FS
3 stall cycles d FO Fl F2 FS
4 d | Fo | Fi| F2 | Fs
d Fo| F1 [r2 [Fs |

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 1.0, 08/98, page 164 of 385

HITACHI

(e) Flow dependency (cont)

-—> Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

ps RoFPUL L EX\| NA | S
FLOAT FPUL,FRO D [*F1 | F2 | FS
LDS R1,FPUL D EX\| NA| s
FLOAT FPUL,R1 | D F1 | F2 Fs |
| | F1 F2 FS |<«— Effectively 1-cycle latency for consecutive
;I’_EC EESE ;BJL D EX NA S FTRC/STS instructions
FTRC FR1,FPUL D Fl1 | F2 | FS
STS FPULR1 I D | EX | NA XS]
(f) Output dependency
< » 11-cycle latency
FSQRT FR4 [FL] e[FS |
F3
[FL [2] Fs
FMOV FROFR4 [| | D |« — L[r FS |
9 stall cycles = latency (11) - The registers are written-back
in program order.
< » 7-cycle latency for lower FR
FADD DRO,DR2 < » 8-cycle latency for upper FR
| FlL | F2 | Fs
d F1 | F2 FS
d F1 | F2 | FS
d F1 | F2 FS
d F1 = FS | FR3 write
F1 E2 Es | FR2 write
FMOV FROFR3 | 1 | D | > EX | NA| s |
6 stall cycles = longest latency (8) - 2
(g) Anti-flow dependency
FTRV xMTRX,Fvo LI | D | Fo] Fi[F2 | Fs
[d Fo | F1 | F2 | Fs
d FO | F1 | F2 | Fs
d FO [F1 [r Fs |
FMOV @R1xD0 [| D le— x| MA[s
1 stall cycle
FADD DRODR2 LI F1 | F2 | FS
d F1 | F2 | FS
d F1 | F2 | FS
d F1 | F2 FS
d F1 | F2 | FS
F1 | r2 | Fs]
FMOV FR4Fr1 ! | D | NA] s
2 stall cycles

Figure 8.3 Examples of Pipelined Execution (cont)

HITACHI

Rev. 1.0, 08/98, page 165 of 385

(h) Resource conflict

#1 #2 #3 #10 #11 #12
< > Latency
<«—» 1 cyclefissue
EDIV ER7 [T o F1 | F2 | Fs | -<«—> F1 stage locked for 1 cycle
R
FL | F2 [Fs |
FMAC FRO,FR8,FRO [b [F1[F2] Fs
FMAC FRO,FR10,FR11 | D F1 F2 FS
FMAC FRO,FR12,FR13 | D F1 F2 FS
FMAC FRO,FR14,FR15 I D |« FL | F2 [Fs |
1 stall cycle (F1 stage resource conflict)
FIPR FV8,FVO [D FO | F1 | F2 | FS
FADD FR15FR4 I D |«—»| FL | F2 | Fs |
1 stall cycle
LDS.L @R15+PR [T o] ex][wma]Fs |
D SX
SX
STC GBR,R2 |I| [D SX | NA s
< > D | sx | Nna| s |

3 stall cycles

FADD DRO,DR2 Cir T ol[FrTer]leEs
d | FL| F2 | FS

d F1 F2 FS
d Fl F2 ES

MAC.W @R1+@R2+ [T [o« > Ex | MA| s |

5 stall cycles 1
D | EX| mMa[s |
f1
fl F2 FS
fl F2 | Fs |
MAC.W @Rl+,@R2+| | | D EX MA| S | f1 stage can overlap preceding f1,
1 but F1 cannot overlap f1.
D || EX [ma] s |
fl
f1 F2 ES
f1 F2 | Fs |
MACW @R1+@R2+ [| Je—[D | EX| MA[s
1 stall f1
cycle D Ex] MA] s |
f1
fl | F2 | Fs
fl | F2 | Fs
FADD DR4,DR6 [J«—— [D J«— s F1 [F2 | Fs
3 stall cycles 2 stall cycles d F1 F2 ES
d F1 F2 FS
d F1 F2 FS
d | F1 | F2 [Fs |
F1

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 1.0, 08/98, page 166 of 385
HITACHI

Table 8.3 Execution Cycles

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Data 1 EXTS.B Rm,Rn EX 1 1 #1 — — —

transfer

instructions
2 EXTSW Rm,Rn EX 1 1 #1 — — —
3 EXTU.B Rm,Rn EX 1 1 #1 — — —
4 EXTUW Rm,Rn EX 1 1 #1 — — —
5 MOV Rm,Rn MT 1 0 #1 — — —
6 MOV #imm,Rn EX 1 1 #1 — — —
7 MOVA @(disp,PC),R0O EX 1 1 #1 — — —
8 MOV.W @(disp,PC),Rn LS 1 2 #2 — — —
9 MOV.L @(disp,PC),Rn LS 1 2 #2 — — —
10 MOV.B @Rm,Rn LS 1 2 #2 — — —
11 MOV.W @Rm,Rn LS 1 2 #2 — — —
12 MOV.L @Rm,Rn LS 1 2 #2 — — —
13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —
14 MOV.W @Rm+,Rn LS 1 1/2 #2 — — —
15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —
16 MOV.B @(disp,Rm),RO LS 1 2 #2 — — —
17 MOV.W @(disp,Rm),R0O LS 1 2 #2 — — —
18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — — —
19 MOV.B @(RO,Rm),Rn LS 1 2 #2 — — —
20 MOV.W @(RO,Rm),Rn LS 1 2 #2 — — —
21 MOV.L @(RO,RmM),Rn LS 1 2 #2 — — —
22 MOV.B @(disp,GBR),R0 LS 1 2 #3 — — —
23 MOV.W @(disp,GBR),RO LS 1 2 #3 — — —
24 MOV.L @(disp,GBR),RO LS 1 2 #3 — — —
25 MOV.B Rm,@Rn LS 1 1 #2 — — —
26 MOV.W Rm,@Rn LS 1 1 #2 — — —
27 MOV.L Rm,@Rn LS 1 1 #2 — — —
28 MOV.B Rm,@-Rn LS 1 11 #2 — — —
29 MOV.W Rm,@-Rn LS 1 11 #2 — — —
30 MOV.L Rm,@-Rn LS 1 1/1 #2 —_ —_ —_
31 MOV.B RO,@(disp,Rn) LS 1 1 #2 — — —

Rev. 1.0, 08/98, page 167 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Data 32 MOV.W R0,@(disp,Rn) LS 1 1 #2 — — —

transfer

instructions
33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 —_ —_ —_
34 MOV.B Rm,@(RO,Rn) LS 1 1 #2 — — —
35 MOV.W Rm,@(RO,Rn) LS 1 1 #2 — — —
36 MOV.L Rm,@(RO,Rn) LS 1 1 #2 — — —
37 MOV.B RO,@(disp,GBR) LS 1 1 #3 — — —
38 MOV.W RO,@(disp,GBR) LS 1 1 #3 — — —
39 MOV.L RO,@(disp,GBR) LS 1 1 #3 — — —
40 MOVCA.L RO,@Rn LS 1 37 #12 MA 4 3-7
41 MOVT Rn EX 1 1 #1 — — —
42 OcCBI @Rn LS 1 1-2 #10 MA 4 1-2
43 OCBP @Rn LS 1 1-5 #11 MA 4 1-5
44 OCBWB @Rn LS 1 1-5 #11 MA 4 1-5
45 PREF @Rn LS 1 1 #2 — — —
46 SWAP.B Rm,Rn EX 1 1 #1 — — —
47 SWAP.W Rm,Rn EX 1 1 #1 — — —
48 XTRCT Rm,Rn EX 1 1 #1 — — —

Fixed-point 49 ADD Rm,Rn EX 1 1 #1 — — —

arithmetic

instructions
50 ADD #imm,Rn EX 1 1 #1 — — —
51 ADDC Rm,Rn EX 1 1 #1 — — —
52 ADDV Rm,Rn EX 1 1 #1 — — —
53 CMP/EQ #imm,RO MT 1 1 #1 — — —
54 CMP/EQ Rm,Rn MT 1 1 #1 — — —
55 CMP/GE Rm,Rn MT 1 1 #1 — — —
56 CMP/GT Rm,Rn MT 1 1 #1 — — —
57 CMP/HI Rm,Rn MT 1 1 #1 — — —
58 CMP/HS Rm,Rn MT 1 1 #1 — — —
59 CMP/PL Rn MT 1 1 #1 — — —
60 CMP/PZ Rn MT 1 1 #1 — — —
61 CMP/STR Rm,Rn MT 1 1 #1 — — —
62 DIVOS Rm,Rn EX 1 1 #1 — — —

Rev. 1.0, 08/98, page 168 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Fixed-point 63 DIVOU EX 1 1 #1 — — —

arithmetic

instructions
64 DIV1 Rm,Rn EX 1 1 #1 — — —
65 DMULS.L Rm,Rn CcoO 2 4/4 #34 F1 4 2
66 DMULU.L Rm,Rn CcoO 2 4/4 #34 F1 4 2
67 DT Rn EX 1 1 #1 — — —
68 MAC.L @Rm+,@Rn+ co 2 2121414 #35 F1 4 2
69 MAC.W @RmM+,@Rn+ CO 2 2121414 #35 F1 4 2
70 MUL.L Rm,Rn coO 2 4/4 #34 F1 4 2
71 MULS.W Rm,Rn CcoO 2 4/4 #34 F1 4 2
72 MULUW Rm,Rn CcoO 2 4/4 #34 F1 4 2
73 NEG Rm,Rn EX 1 1 #1 — — —
74 NEGC Rm,Rn EX 1 1 #1 — — —
75 SUB Rm,Rn EX 1 1 #1 — — —
76 SUBC Rm,Rn EX 1 1 #1 — — —
77 SUBV Rm,Rn EX 1 1 #1 — — —

Logical 78 AND Rm,Rn EX 1 1 #1 — — —

instructions
79 AND #imm,R0O EX 1 1 #1 — — —
80 AND.B #mm,@(RO,GBR) CO 4 4 #6 — S —
81 NOT Rm,Rn EX 1 1 #1 — — —
82 OR Rm,Rn EX 1 1 #1 — — —
83 OR #imm,RO EX 1 1 #1 — — —_
84 ORB #imm,@(R0O,GBR) CO 4 4 #6 — S —
85 TAS.B @Rn Cco 5 5 #7 - — —
86 TST Rm,Rn MT 1 1 #1 — — —
87 TST #imm,RO MT 1 1 #1 — — —
88 TST.B #imm,@(RO,GBR) CO 3 3 #5 — — —
89 XOR Rm,Rn EX 1 1 #1 — — —
90 XOR #imm,RO EX 1 1 #1 — — —
91 XOR.B #imm,@(R0O,GBR) CO 4 4 #6 — S —

Rev. 1.0, 08/98, page 169 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Shift 92 ROTL Rn EX 1 1 #1 — — —

instructions
93 ROTR Rn EX 1 1 #1 — — —
94 ROTCL Rn EX 1 1 #1 — — —
95 ROTCR Rn EX 1 1 #1 — — —
96 SHAD Rm,Rn EX 1 1 #1 — — —
97 SHAL Rn EX 1 1 #1 — — —
98 SHAR Rn EX 1 1 #1 — — —
99 SHLD Rm,Rn EX 1 1 #1 — — —
100 SHLL Rn EX 1 1 #1 — — —
101 SHLL2 Rn EX 1 1 #1 — — —
102 SHLLS8 Rn EX 1 1 #1 — — —
103 SHLL16 Rn EX 1 1 #1 — — —
104 SHLR Rn EX 1 1 #1 — — —
105 SHLR2 Rn EX 1 1 #1 — — —
106 SHLRS8 Rn EX 1 1 #1 — — —
107 SHLR16 Rn EX 1 1 #1 — — —

Branch 108 BF disp BR 1 2(rl) #1 — — —

instructions
109 BF/S disp BR 1 2(rl) #1 — — —
110 BT disp BR 1 2(0rl) #1 — — —
111 BT/S disp BR 1 2(r1) #1 — S —
112 BRA disp BR 1 2 #1 — — —
113 BRAF Rn CcoO 2 3 #4 — — —
114 BSR disp BR 1 2 #14 SX 3 2
115 BSRF Rn CcO 2 3 #24 SX 3 2
116 JMP @Rn CcO 2 3 #4 —_ — _
117 JSR @Rn Cco 2 3 #24 SX 3 2
118 RTS Cco 2 3 #4 —_ — —_

Rev. 1.0, 08/98, page 170 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

System 119 NOP MT 1 0 #1 — — —

control

instructions
120 CLRMAC CO 1 3 #28 F1 3 2
121 CLRS Cco 1 1 #1 — — —
122 CLRT MT 1 1 #1 — — —
123 SETS Cco 1 1 #1 — — —
124 SETT MT 1 1 #1 — — —
125 TRAPA #imm Cco 7 7 #13 — — —
126 RTE CO 5 5 #3 — — —
127 SLEEP co 4 4 #9 — — —
128 LDTLB co 1 1 #2 — — —
129 LDC Rm,DBR CcO 1 3 #14 SX 3 2
130 LDC Rm,GBR Cco 3 3 #15 SX 3 2
131 LDC Rm,Rp_BANK co 1 3 #14 SX 3 2
132 LDC Rm,SR Co 4 4 #16 SX 3 2
133 LDC Rm,SSR Cco 1 3 #14 SX 3 2
134 LDC Rm,SPC co 1 3 #14 SX 3 2
135 LDC Rm,VBR Cco 1 3 #14 SX 3 2
136 LDC.L @Rm+,DBR CO 1 1/3 #17 SX 3 2
137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2
138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2
139 LDC.L @Rm+,SR co 4 4/4 #19 SX 3 2
140 LDC.L @Rm+,SSR CO 1 1/3 #17 SX 3 2
141 LDC.L @Rm+,SPC CO 1 1/3 #17 SX 3 2
142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2
143 LDS Rm,MACH CcoO 1 3 #28 F1 3 2
144 LDS Rm,MACL CcO 1 3 #28 F1 3 2
145 LDS Rm,PR Cco 2 3 #24 SX 3 2
146 LDS.L @Rm+,MACH CO 1 1/3 #29 F1 3 2
147 LDS.L @Rm+,MACL Cco 1 1/3 #29 F1 3 2
148 LDS.L @Rm+,PR Cco 2 2/3 #25 SX 3 2
149 STC DBR,Rn Cco 2 2 #20 — — —
150 STC SGR,Rn Co 3 3 #21 — — —

Rev. 1.0, 08/98, page 171 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-

Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

System 151 STC GBR,Rn Co 2 2 #20 — — —

control

instructions
152 STC Rp_BANK,Rn co 2 2 #20 — — —
153 STC SR,Rn CO 2 2 #20 — — —
154 STC SSR,Rn CO 2 2 #20 — — —
155 STC SPC,Rn CO 2 2 #20 — — —
156 STC VBR,Rn CO 2 2 #20 — — —
157 STC.L DBR,@-Rn Cco 2 2/2 #22 — — —
158 STC.L SGR,@-Rn CO 3 3/3 #23 — — —
159 STC.L GBR,@-Rn CO 2 22 #22 — — —
160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —
161 STC.L SR,@-Rn CO 2 22 #22 — — —
162 STC.L SSR,@-Rn CO 2 22 #22 — — —
163 STC.L SPC,@-Rn CO 2 22 #22 — — —
164 STC.L VBR,@-Rn CO 2 22 #22 — — —
165 STS MACH,Rn Cco 1 3 #30 — — —
166 STS MACL,Rn CO 1 3 #30 — — —
167 STS PR,Rn Cco 2 2 #26 — — —
168 STS.L MACH,@-Rn CcO 1 11 #31 —_ —_ —
169 STS.L MACL,@-Rn CcO 1 171 #31 —_ — —_
170 STS.L PR,@-Rn Co 2 2/2 #27 — — —

Single- 171 FLDIO FRn LS 1 0 #1 —_ —_ —_

precision

floating-point

instructions
172 FLDI1 FRn LS 1 0 #1 —_ —_ —_
173 FMOV FRm,FRn LS 1 0 #1 — — —
174 FMOV.S @Rm,FRn LS 1 2 #2 — — —
175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —
176 FMOV.S @(RO,Rm),FRn LS 1 2 #2 — — —
177 FMOV.S FRm,@Rn LS 1 1 #2 — — —
178 FMOV.S FRm,@-Rn LS 1 1/1 #2 — — —
179 FMOV.S FRm,@(RO,Rn) LS 1 1 #2 — — —
180 FLDS FRm,FPUL LS 1 #1 — — —
181 FSTS FPUL,FRn LS 1 0 #1 — — —

Rev. 1.0, 08/98, page 172 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Single- 182 FABS FRn LS 1 0 #1 — — —
precision
floating-point
instructions
183 FADD FRm,FRn FE 1 3/4 #36 — e e
184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —
185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —
186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10
F1 11
187 FLOAT FPUL,FRn FE 1 3/4 #36 F1 2
188 FMAC FRO,FRm,FRn FE 1 3/4 #36 — — —
189 FMUL FRm,FRn FE 1 3/4 #36 —_ e —
190 FNEG FRn LS 1 0 #1 — — —
191 FSQRT FRn FE 1 11/12 #37 F3 2 9
F1 10 1
192 FSUB FRm,FRn FE 1 3/4 #36 — — —
193 FTRC FRm,FPUL FE 1 3/4 #36 — — —
194 FMOV DRm,DRnN LS 1 0 #1 — — —
195 FMOV @Rm,DRn LS 1 2 #2 — — —
196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —
197 FMOV @(RO,RmM),DRn LS 1 2 #2 — — —
198 FMOV DRm,@Rn LS 1 1 #2 — — —
199 FMOV DRm,@-Rn LS 1 11 #2 — — —
200 FMOV DRm,@(RO,Rn) LS 1 1 #2 — — —
Double- 201 FABS DRn LS 1 0 #1 — — —
precision
floating-point
instructions
202 FADD DRm,DRn FE 1 (7,8)/9 #39 F1 2 6
203 FCMP/EQ DRm,DRn CcoO 2 3/5 #40 F1 2 2
204 FCMP/GT DRm,DRn CcO 2 3/5 #40 F1 2 2
205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2
206 FCNVSD FPUL,DRn FE 1 (3,4)5 #38 F1 2 2
207 FDIV DRm,DRn FE 1 (24, 25)/ #41 F3 2 21
26
F1 20
208 FLOAT FPUL,DRn FE 1 3,4)5 #38 F1
209 FMUL DRm,DRnN FE 1 (7,8)/9 #39 F1

Rev. 1.0, 08/98, page 173 of 385
HITACHI

Table 8.3 Execution Cycles (cont)

Lock
Instruc- Execu-
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Double- 210 FNEG DRn LS 1 0 #1 — — —
precision
floating-point
instructions
211 FSQRT DRn FE 1 (23, 24) #41 F3 2 20
25
F1 19 3
212 FSUB DRm,DRn FE 1 (7,8)/9 #39 F1 2 6
213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2
FPU system 214 LDS Rm,FPUL LS 1 1 #1 — — —
control
instructions
215 LDS Rm,FPSCR co 1 4 #32 F1 3 3
216 LDS.L @Rm+,FPUL co 1 1/2 #2 — — —
217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3
218 STS FPUL,Rn LS 1 3 #1 — — —
219 STS FPSCR,Rn CcO 1 3 #1 — — —
220 STS.L FPUL,@-Rn CcoO 1 11 #2 — — —
221 STS.L FPSCR,@-Rn CcoO 1 11 #2 — — —
Graphics 222 FMOV DRm,XDn LS 1 0 #1 — — —
acceleration
instructions
223 FMOV XDm,DRn LS 1 0 #1 — — —
224 FMOV XDm,XDn LS 1 0 #1 — — —
225 FMOV @Rm,XDn LS 1 2 #2 — — —
226 FMOV @Rm+,XDn LS 1 1/2 #2 — — —
227 FMOV @(RO,RmM),XDn LS 1 2 #2 — — —
228 FMOV XDm,@Rn LS 1 1 #2 — — —
229 FMOV XDm,@-Rm LS 1 1/1 #2 — — —
230 FMOV XDm,@(RO,Rn) LS 1 1 #2 — — —
231 FIPR FVm,FVvn FE 1 4/5 #42 F1 3 1
232 FRCHG FE 1 1/4 #36 — — —
233 FSCHG FE 1 1/4 #36 — — —
234 FTRV XMTRX,FVn FE 1 (5,5,6, #43 FO 2 4
7)18

F1 3 4

Notes on next page

Rev. 1.0, 08/98, page 174 of 385
HITACHI

Notes: 1.
2.

9.

See table 8.1 for the instruction groups.

Latency “L1/L2...": Latency corresponding to a write to each register, including
MACH/MACL/FPSCR.

Example: MOV.B @Rm+, Rn “1/2": The latency for Rm is 1 cycle, and the latency for
Rnis 2 cycles.

Branch latency: Interval until the branch destination instruction is fetched

Conditional branch latency “2 (or 1)": The latency is 2 for a nonzero displacement, and
1 for a zero displacement.

Double-precision floating-point instruction latency “(L1, L2)/L3": L1 is the latency for
FR [n+1], L2 that for FR [n], and L3 that for FPSCR.

FTRV latency “(L1, L2, L3, L4)/L5": L1 is the latency for FR [n], L2 that for FR [n+1],
L3 that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for Rm, L2
that for Rn, L3 that for MACH, and L4 that for MACL.

Latency “L1/L2" of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L instructions:
L1 is the latency for MACH, and L2 that for MACL.

Execution pattern: The instruction execution pattern number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:

1.

When a floating-point operation instruction is followed by a floating-point store, the

latency of the floating-point operation is decreased by 1 cycle.

When the preceding instruction loads the shift amount of the following SHAD/SHLD,

the latency of the load is increased by 1 cycle.

When an LS group instruction with a latency of less than 3 cycles is followed by a

double-precision floating-point instruction, FIPR, or FTRV, the latency of the first

instruction is increased to 3 cycles.

Example: n the case of FMOV FR4,FRO and FIPR FVO,FV4, FIPR is stalled for 2
cycles.

When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction, the

latency of MAC*/MUL*/DMUL* is 5 cycles.

In the case of consecutive executions of MAC*/MUL*/DMUL?*, the latency is decreased

to 2 cycles.

When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the latency

of the LDS to MAC* is 4 cycles.

When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the LDS to

MAC* is 1 cycle.

When an FSCHG or FRCHG instruction is followed by an LS group instruction that

reads or writes to a floating-point register, the aforementioned LS group instruction[s]

cannot be executed in parallel.

When a single-precision FTRC instruction is followed by an STS FPUL, Rn instruction,

the latency of the single-precision FTRC instruction is 1 cycle.

10. When a double-precision FTRC instruction is followed by an STS FPUL, Rn

instruction, the latency of the double-precision FTRC instruction is 3 cycles.

Rev. 1.0, 08/98, page 175 of 385
HITACHI

Rev. 1.0, 08/98, page 176 of 385
HITACHI

Section 9 Power-Down Modes

9.1 Overview

In the power-down modes, some of the on-chip peripheral modules and the CPU functions are
halted, enabling power consumption to be reduced.

9.1.1 Types of Power-Down Modes
The following power-down modes and functions are provided:

* Sleep mode

* Deep sleep mode

« Standby mode

¢ Module standby function (TMU, RTC, SCI/SCIF, and DMAC on-chip peripheral modules)

Table 9.1 shows the conditions for entering these modes from the program execution state, the
status of the CPU and peripheral modules in each mode, and the method of exiting each mode.

Rev. 1.0, 08/98, page 177 of 385
HITACHI

Table 9.1 Status of CPU and Peripheral Modules in Power-Down Modes

Status
Power- On-chip
Down Entering On-Chip Peripheral External Exiting
Mode Conditions CPG CPU Memory Modules Pins Memory Method
Sleep SLEEP Operating Halted Held Operating Held Refreshing « Interrupt
instruction (registers . Reset
executed held)
while STBY
bitis 0in
STBCR
Deep SLEEP Operating Halted Held Operating Held Self- « Interrupt
sleep instruction (registers (DMA halted) refreshing | Reset
executed held)
while STBY
bitis 0in
STBCR, and
DSLP bitis 1
in STBCR2
Standby SLEEP Halted Halted Held Halted* Held Self- « Interrupt
instruction (registers refreshing . Reset
executed held)
while STBY
bitis 1 in
STBCR
Module Setting MSTP Operating Operating Held Specified Held Refreshing « Clearing
standby bitto 1in modules MSTP bit
STBCR halted*
to 0
» Reset

Note: The RTC operates when the START bit in RCR2 is 1 (see section 11, Realtime Clock
(RTC), in the Hardware Manual).

9.1.2 Register Configuration

Table 9.2 shows the registers used for power-down mode control.

Table 9.2 Power-Down Mode Registers

Initial Area 7 Access
Name Abbreviation R/W Value P4 Address Address Size
Standby control register STBCR R/W H'00 H'FFC00004 H'1FC00004 8
Standby control register 2 STBCR2 R/W H'00 H'FFC00010 H'1FC00010 8

Rev. 1.0, 08/98, page 178 of 385
HITACHI

9.2 Register Descriptions

9.2.1 Standby Control Register (STBCR)

The standby control register (STBCR) is an 8-bit readable/writable register that specifies the
power-down mode status. It is initialized to H'00 by a power-on reset VRERIET pin or due
to watchdog timer overflow.

Bit: 7 6 5 4 3 2 1 0
| STBY | PHZ | PPU | MSTP4| MSTP3| MSTP2| MSTP1 | MSTPO|
Initial value: 0 0 0 0 0 0 0 0

R/W: R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7—Standby (STBY): Specifies a transition to standby mode.

Bit 7: STBY Description
0 Transition to sleep mode on execution of SLEEP instruction (Initial value)
1 Transition to standby mode on execution of SLEEP instruction

Bit 6—Peripheral Module Pin High Impedance Control (PHZ): Controls the state of
peripheral module related pins in standby mode. When the PHZ bit is set to 1, peripheral module
related pins go to the high-impedance state in standby mode.

For the relevant pins, see section 9.2.2, Peripheral Module Pin High Impedance Control.

Bit 6: PHZ Description
0 Peripheral module related pins are in normal state (Initial value)
1 Peripheral module related pins go to high-impedance state

Bit 5—Peripheral Module Pin Pull-Up Control (PPU): Controls the state of peripheral
module related pins. When the PPU bit is cleared to 0, the pull-up resistor is turned on for
peripheral module related pins in the input or high-impedance state.

For the relevant pins, see section 9.2.3, Peripheral Module Pin Pull-Up Control.

Bit 5: PPU Description
0 Peripheral module related pin pull-up resistors are on (Initial value)
1 Peripheral module related pin pull-up resistors are off

Rev. 1.0, 08/98, page 179 of 385
HITACHI

Bit 4—Module Stop 4 (MSTP4):Specifies stopping of the clock supply to the DMAC among

the on-chip peripheral modules. The clock supply to the DMAC is stopped when the MSTP4 bit
is set to 1. When DMA transfer is used, stop the transfer before setting the MSTP4 bit to 1.
When DMA transfer is performed after clearing the MSTP4 bit to 0, DMAC settings must be
made again.

Bit 4: MSTP4 Description
0 DMAC operates (Initial value)
1 DMAC clock supply is stopped

Bit 3—Module Stop 3 (MSTP3):Specifies stopping of the clock supply to serial
communication interface channel 2 (SCIF) among the on-chip peripheral modules. The clock
supply to the SCIF is stopped when the MSTP3 bit is set to 1.

Bit 3: MSTP3 Description
0 SCIF operates (Initial value)
1 SCIF clock supply is stopped

Bit 2—Module Stop 2 (MSTP2):Specifies stopping of the clock supply to the timer unit
(TMU) among the on-chip peripheral modules. The clock supply to the TMU is stopped when
the MSTP2 bit is set to 1.

Bit 2: MSTP2 Description
0 TMU operates (Initial value)
1 TMU clock supply is stopped

Bit 1—Module Stop 1 (MSTP1):Specifies stopping of the clock supply to the realtime clock
(RTC) among the on-chip peripheral modules. The clock supply to the RTC is stopped when the
MSTP1 bit is set to 1. When the clock supply is stopped, RTC registers cannot be accessed but
the counters continue to operate.

Bit 1: MSTP1 Description
0 RTC operates (Initial value)
1 RTC clock supply is stopped

Rev. 1.0, 08/98, page 180 of 385
HITACHI

Bit 0—Module Stop 0 (MSTPO):Specifies stopping of the clock supply to serial
communication interface channel 1 (SCI) among the on-chip peripheral modules. The clock
supply to the SCI is stopped when the MSTPO bit is set to 1.

Bit 0: MSTPO Description
0 SCI operates (Initial value)
1 SCI clock supply is stopped

9.2.2 Peripheral Module Pin High Impedance Control

When bit 6 in the standby control register (STBCR) is set to 1, peripheral module related pins go
to the high-impedance state in standby mode.

* Relevant Pins

SCl related pins MDO/SCK MD1/TXD2
MD7/TXD MD8/RTS2
CTS2

DMA related pins DACKO DRAKO
DACK1 DRAK1

* Other Information
High impedance control is not performed when the above pins are used as port output pins.

9.2.3 Peripheral Module Pin Pull-Up Control

When bit 5 in the standby control register (STBCR) is cleared to 0, peripheral module related
pins are pulled up when in the input or high-impedance state.

* Relevant Pins

SCl related pins MDO/SCK MD1/TXD2 MD2/RXD2
MD7/TXD MD8/RTS2 SCK2/MRESET
RXD CTS2

DMA related pins [DREQO DACKO DRAKO
DREQT DACK1 DRAK1

TMU related pin TCLK

Rev. 1.0, 08/98, page 181 of 385
HITACHI

9.24 Standby Control Register 2 (STBCR2)

Standby control register 2 (STBCR2) is an 8-bit readable/writable register that specifies the
sleep mode and deep sleep mode transition conditions. It is initialized to H'00 by a power-on
reset via th&RESET pin or due to watchdog timer overflow.

Bit: 7 6 5 4 3 2 1 0
IEE I e e) e
Initial value: 0 0 0 0 0 0 0 0
R/W: R/W

Bit 7—Deep Sleep (DSLP)Specifies a transition to deep sleep mode

Bit 7: DSLP Description

0 Transition to sleep mode or standby mode on execution of SLEEP
instruction, according to setting of STBY bit in STBCR register(Initial value)

1 Transition to deep sleep mode on execution of SLEEP instruction*
Note: * When the STBY bit in the STBCR register is 0

Bits 6 to 0—ReservedOnly 0 should only be written to these bits; operation cannot be
guaranteed if 1 is written. These bits are always read as 0.

Rev. 1.0, 08/98, page 182 of 385
HITACHI

9.3 Sleep Mode

9.3.1 Transition to Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0, the chip
switches from the program execution state to sleep mode. After execution of the SLEEP
instruction, the CPU halts but its register contents are retained. The on-chip peripheral modules
continue to operate, and the clock continues to be output from the CKIO pin.

In sleep mode, a high-level signal is output at the STATUSL pin, and a low-level signal at the
STATUSO pin.

9.3.2 Exit from Sleep Mode

Sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a
reset. In sleep mode, interrupts are accepted even if the BL bit in the SR register is 1. If
necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

Exit by Interrupt: When an NMI, IRL, or on-chip peripheral module interrupt is generated,
sleep mode is exited and interrupt exception handling is executed. The code corresponding to the
interrupt source is set in the INTEVT register.

Exit by Reset: Sleep mode is exited by means of a power-on or manual reset RESE&
pin, or a power-on or manual reset executed when the watchdog timer overflows.

9.4 Deep Sleep Mode

9.4.1 Transition to Deep Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0 and the DSLP
bit in STBCR2 is set to 1, the chip switches from the program execution state to deep sleep
mode. After execution of the SLEEP instruction, the CPU halts but its register contents are
retained. Except for the DMAC, on-chip peripheral modules continue to operate, and the clock
continues to be output from the CKIO pin.

In deep sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at
the STATUSO pin.

9.4.2 Exit from Deep Sleep Mode

As with sleep mode, deep sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip
peripheral module) or a reset.

Rev. 1.0, 08/98, page 183 of 385
HITACHI

9.5 Standby Mode

9.5.1 Transition to Standby Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is set to 1, the chip switches
from the program execution state to standby mode. In standby mode, the on-chip peripheral
modules halt as well as the CPU. Clock output from the CKIO pin is also stopped.

The CPU and cache register contents are retained. Some on-chip peripheral module registers are
initialized. The state of the peripheral module registers in standby mode is shown in table 9.4.

Table 9.4 State of Registers in Standby Mode

Registers That Retain

Module Initialized Registers Their Contents

Interrupt controller — All registers

User break controller — All registers

Bus state controller — All registers

On-chip oscillation circuits — All registers

Timer unit TSTR register* All registers except TSTR
Realtime clock — All registers

Direct memory access controller — All registers

Serial communication interface See Appendix A, Address List See Appendix A, Address

List

Note: * Not initialized when the realtime clock (RTC) is in use (see section 12, Timer Unit (TMU),
in the Hardware Manual).

Note: DMA transfer should be terminated before making a transition to standby mode. Transfer
results are not guaranteed if standby mode is entered during transfer.

The procedure for a transition to standby mode is shown below.

1. Clear the TME bit in the WDT timer control register (WTCSR) to 0, and stop the WDT.

Set the initial value for the up-count in the WDT timer counter (WTCNT), and set the clock
to be used for the up-count in bits CKS2—-CKSO0 in the WTCSR register.

2. Setthe STBY bit in the STBCR register to 1, then execute a SLEEP instruction.

3. When standby mode is entered and the chip’s internal clock stops, a low-level signal is
output at the STATUSL pin, and a high-level signal at the STATUSO pin.

Rev. 1.0, 08/98, page 184 of 385
HITACHI

9.5.2 Exit from Standby Mode

Standby mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a
reset via th&RESET pin.

Exit by Interrupt: A hot start can be performed by means of the on-chip WDT. When an NMI,
IRL™, or on-chip peripheral module (except interval tirffeinterrupt is detected, the WDT

starts counting. After the count overflows, clocks are supplied to the entire chip, standby mode is
exited, and the STATUS1 and STATUSO pins both go low. Interrupt exception handling is then
executed, and the code corresponding to the interrupt source is set in the INTEVT register. In
standby mode, interrupts are accepted even if the BL bit in the SR register is 1, and so, if
necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

The phase of the CKIO pin clock output may be unstable immediately after an interrupt is
detected, until standby mode is exited.

Notes: 1. Only when the RTC clock (32.768 kHz) is operating (see section 19.2.2, IRL
Interrupts, in the Hardware Manual), standby mode can be exited by means of IRL3—
IRLO (when the IRL3-IRLO level is higher than the SR register I13—10 mask level).

2. Standby mode can be exited by means of an RTC interrupt.

Exit by Reset: Standby mode is exited by means of a reset (power-on or manual) RESE&
pin. TheRESET pin should be held low until clock oscillation stabilizes. The internal clock
continues to be output at the CKIO pin.

9.5.3 Clock Pause Function

In standby mode, it is possible to stop or change the frequency of the clock input from the
EXTAL pin. This function is used as follows.

1. Enter standby mode following the transition procedure described above.

2. When standby mode is entered and the chip’s internal clock stops, a low-level signal is
output at the STATUSL pin, and a high-level signal at the STATUSO pin.

3. The input clock is stopped, or its frequency changed, after the STATUS1 pin goes low and
the STATUSO pin high.

4. When the frequency is changed, input an NMI or IRL interrupt after the change. When the
clock is stopped, input an NMI or IRL interrupt after applying the clock.

5. After the time set in the WDT, clock supply begins inside the chip, the STATUS1 and
STATUSO pins both go low, and operation is resumed from interrupt exception handling.

Rev. 1.0, 08/98, page 185 of 385
HITACHI

9.6 Module Standby Function

9.6.1 Transition to Module Standby Function

Setting the MSTP4-MSTPO bits in the standby control register to 1 enables the clock supply to
the corresponding on-chip peripheral modules to be halted. Use of this function allows power
consumption in sleep mode to be further reduced.

In the module standby state, the on-chip peripheral module external pins retain their states prior
to halting of the modules, and most registers retain their states prior to halting of the modules.

Bit Description
MSTP4 0 DMAC operates

1 Clock supplied to DMAC is stopped
MSTP3 0 SCIF operates

1 Clock supplied to SCIF is stopped
MSTP2 0 TMU operates

1 Clock supplied to TMU is stopped, and register is initialized**
MSTP1 0 RTC operates

1 Clock supplied to RTC is stopped**
MSTPO 0 SCI operates

1 Clock supplied to SCl is stopped

Notes: 1. The register initialized is the same as in standby mode, but initialization is not
performed if the RTC clock is not in use (see section 12, Timer Unit (TMU), in the
Hardware Manual).

2. The counter operates when the START bit in RCR2 is 1 (see section 11, Realtime
Clock (RTC), in the Hardware Manual).
9.6.2 Exit from Module Standby Function

The module standby function is exited by clearing the MSTP4-MSTPO bits to 0, or by a power-
on reset via th®ESET pin or a power-on reset caused by watchdog timer overflow.

Rev. 1.0, 08/98, page 186 of 385
HITACHI

Section 10 Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for the
instruction descriptions.

Instruction Name Full Name Instruction Type
Function (Indication of delayed branch
instruction or interrupt-disabling
instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
The assembler input Summarizes the operation ~ Shown in MSB « - The no- Shows the
format is shown. imm of the instruction. LSB order. wait value T bit value
and disp are numeric is shown. after
values, expressions, execution
or symbols. of the
instruction.
Description

Describes the operation of the instruction.

Notes

Identifies points to be noted when using the instruction.
Operation

Shows the operation in C. This is given as reference material to help understand the operation of
the instruction. Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)
double double-precision floating point number(64 bits)

These are data types.

Rev. 1.0, 08/98, page 187 of 385
HITACHI

unsigned char Read_Byte(unsigned long Addr);
unsigned short Read_Word(unsigned long Addr);
unsigned long Read_Long(unsigned long Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n
address, or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);
Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;
unsigned long MACH,MACL,PR;
unsigned long PC;

Registers

struct SRO {
unsigned long dummy0:22;
unsigned long MO0:1;
unsigned long QO0:1;
unsigned long 10:4;
unsigned long dummy1:2;
unsigned long S0:1;
unsigned long TO:1;

h

SR structure definitions

define M ((*(struct SRO *)(&SR)).M0)

#define Q ((*(struct SRO *)(&SR)).Q0)
#define S ((*(struct SRO *)(&SR)).S0)
#define T ((*(struct SRO *)(&SR)).T0)

Definitions of bits in SR

Rev. 1.0, 08/98, page 188 of 385
HITACHI

Error(char *er);

Error display function

These are floating-point number definition statements.
#define PZERO 0

#define NZERO 1

#define DENORM 2

#define NORM 3

#define PINF
#define NINF
#define gNaN
#define sNaN
#define EQ 0
#define GT 1
#define LT 2
#define UO 3
#define INVALID 4
#define FADD 0
#define FSUB 1

N o O R

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */
#define SET_E 0x00020000 /* FPSCR(bit17) */
#define SET_V 0x00010040 /* FPSCR(bit16,6) */
#define SET_Z 0x00008020 /* FPSCR(bit15,5) */
#define SET_O 0x00004010 /* FPSCR(bit14,4) */
#define SET_U 0x00002008 /* FPSCR(bit13,3) */
#define SET | 0x00001004 /* FPSCR(bit12,2) */
#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */
#define ENABLE_V 0x00000800 /* FPSCR(bit11) */
#define ENABLE_Z 0x00000400 /* FPSCR(bit10) */
#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */
#define ENABLE_| 0x00000080 /* FPSCR(bit7) */
#define FLAG ~ 0x0000007C /* FPSCR(bit6-2) */

#define FPSCR_FR FPSCR>>21&1
#define FPSCR_PR FPSCR>>19&1
#define FPSCR_DN FPSCR>>18&1

Rev. 1.0, 08/98, page 189 of 385
HITACHI

#define FPSCR_|I FPSCR>>12&1
#define FPSCR_RM FPSCR&1
#define FR_HEX frfI[FPSCR_FR]

#define FR frf.fl FPSCR_FR]
#define DR frf.d[FPSCR_FR]
#define XF_HEX frf.[[~FPSCR_FR]
#define XF frf. f[~FPSCR_FR]
#define XD frf.d[~FPSCR_FR]
union {

int 1[2][16];

float f[2][16];
double d[2][8];
} frf;
int FPSCR;

int sign_of(int n)
{
return(FR_HEX[n]>>31);
}
int data_type_of(int n)
int abs;
abs = FR_HEX[n] & OxTfffffff;
if(FPSCR_PR ==0) { /* Single-precisiort/
if(abs < 0x00800000){
if(FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(n) == 0) return(PZERO);
else return(NZERO);
}
else return(DENORM);
}
else if(abs < 0x7f800000) return(NORM);
else if(abs == 0x7f800000) {
if(sign_of(n) == 0) return(PINF);
else return(NINF);

}
else if(abs < 0x7fc00000) return(gNaN);

Rev. 1.0, 08/98, page 190 of 385
HITACHI

else

}

else{ /*

return(sNaN);

Double-precisiort/

if(abs < 0x00100000){

if((FPSCR_DN == 1) || (abs == 0x00000000)){

if(sign_of(n) == 0) return(PZERO);

else

}

else

}

return(NZERO);

return(DENORM);

else if(abs < 0x7ff00000) return(NORM);
else if((abs == 0x7ff00000) &&
(FR_HEX[n+1] == 0x00000000)) {

if(sign_of(n) == 0) return(PINF);

else

}

return(NINF);

else if(abs < 0x7ff80000) return(gNaN);

else

}

return(sNaN);

void register_copy(int m,n)

{

FR[n] = FR[m];
if(FPSCR_PR == 1) FR[n+1] = FR[m+1];

}

void normal_faddsub(int m,n,type)

{
union {

float f;

intl;
} dstf,srcf;
union {

double d;

int 1[2];
} dstd,srcd;
union { *

int double x; /*

“long double” format: */

1-bitsign */

HITACHI

Rev. 1.0, 08/98, page 191 of 385

int I[4]; I* 15-bit exponent*/
1} dstx; /* 112-bit mantissa*/
if(FPSCR_PR ==0) {
if(type == FADD) srcf.f = FR[m];
else srcf.f = -FR[m];
dstd.d = FR[n]; /* Conversion from single-precision to double-precisibn
dstd.d += srcf.f;
if(((dstd.d == FR[n]) && (srcf.f 1= 0.0)) ||
((dstd.d == srcf.f) && (FR[n] != 0.0))) {
if(sign_of(m)” sign_of(n)) {
dstd.l[1] -= 1;
if(dstd.I[1] == Oxffffffff) dstd.l[0] -= 1;

}

}

if(dstd.I[1] & Ox1fffffff) set_I();

dstf.f += srcf.f; /* Round to neare$t

if(FPSCR_RM == 1) {
dstd.l[1] &= 0xe0000000; /* Round to zerd/
dstf.f = dstd.d;

}

check_single_exception(&FR[n],dstf.f);

}else {

if(type == FADD) srcd.d = DR[m>>1];

else srcd.d = -DR[m>>1];

dstx.x = DR[n>>1];

I* Conversion from double-precision to extended double-precision
*/

dstx.x += srcd.d;
if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||
((dstx.x == srcd.d) && (DR[n>>1] = 0.0))) {
set_I();
if(sign_of(m)” sign_of(n)) {
dstx.I[3] -= 1;
if(dstx.I[3] == Oxffffffff) dstx.l[2] -= 1;
if(dstx.I[2] == Oxffffffff) dstx.I[1] -= 1;
if(dstx.I[1] == Oxffffffff) dstx.I[0] -= 1;
}

Rev. 1.0, 08/98, page 192 of 385
HITACHI

}
if((dstx.I[2] & OxOFfffiff) || dstx.I[3]) set_I();

dst.d += srcd.d; /* Round to neare$t
if(FPSCR_RM == 1) {
dstx.I[2] &= 0xf0000000; /* Round to zerd/
dstx.I[3] = 0x00000000;
dst.d = dstx.x;

}
check_double_exception(&DR[n>>1] ,dst.d);

}
void normal_fmul(int m,n)
{
union {
float f;
intl;

} tmpf;

union {
double d;
int I[2];
} tmpd;
union {
int double x;
int 1[4];
} tmpx;
if(FPSCR_PR == 0) {
tmpd.d = FR[n]; /* Single-precision to double-precisith
tmpd.d *= FR[m]; /* Precise creatiol
tmpf.f *= FR[m]; /* Round to nearedt
if(tmpf.f 1= tmpd.d) set_I();
if((tmpf.f > tmpd.d) && (SPSCR_RM == 1)) {
tmpf.l-=1; /* Round to zerd/
}
check_single_exception(&FR[n],tmpf.f);
}else {
tmpx.x = DR[n>>1]; /* Single-precision to double-precisith

Rev. 1.0, 08/98, page 193 of 385
HITACHI

tmpx.x *= DR[m>>1]; /* Precise creatioty
tmpd.d *= DR[m>>1]; /* Round to nearedi
if(tmpd.d != tmpx.x) set_I();
if(tmpd.d > tmpx.x) && (SPSCR_RM == 1)) {
tmpd.I[1] -=1; /* Round to zerd/
if(tmpd.I[1] == Oxffffffff) tmpd.I[0] -= 1;
}
check_double_exception(&DR[n>>1], tmpd.d);

}
void fipr(int m,n)
{
union {
double d;
int I[2];
} mit[4];
float dstf;
if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||
(data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||
(data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||
(data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||
(check_product_invalid(m,n)) ||
(check_product_invalid(m+1,n+1)) ||
(check_product_invalid(m+2,n+2)) ||
(check_product_invalid(m+3,n+3))) invalid(n+3);
else if((data_type_of(m) == gNaN)|| (data_type_of(n) == qNaN)||
(data_type_of(m+1) == gNaN) || (data_type_of(n+1) == gNaN) ||
(data_type_of(m+2) == gNaN) || (data_type_of(n+2) == gNaN) ||

(data_type_of(m+3) == gNaN) || (data_type_of(n+3) == gNaN))
gnan(n+3);

else if (check_ positive_infinity() &&

(check_ negative_infinity()) invalid(n+3);
else if (check_ positive_infinity()) inf(n+3,0);
else if (check_ negative_infinity()) inf(n+3,1);
else {

for(i=0;i<4;i++) {
/* If FP'SCR_DN == 1, zeroiz¥

Rev. 1.0, 08/98, page 194 of 385
HITACHI

if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;
else if(data_type_of(m+i) == NZERO) FR[m+i] = -0.0;
if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;
else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;
mit[i].d = FR[m+i];

mit[i].d *= FR[n+i];

1* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description
is simplified, and differs from the hardwaré.
mit[i].I[1] &= 0xff000000;
mit[i].I[1] |= 0x00800000;
}
mit[0].d += mlt[1].d + mit[2].d + mIt[3].d};
mit[0].[[1] &= 0xff800000;
dstf = mit[0].d;
set_I();
check_single_exception(&FR[n+3],dstf);

}
}
void check_single_exception(float *dst,result)
{
union {
float f;
intl;
} tmp;
float abs;
if(result < 0.0) tmp.l = 0xff800000; /* — infinity */
else tmp.l = 0x7f800000; /* + infinity */
if(result == tmp.f) {
set_0O();
if(FPSCR_RM == 1) {
tmp.l-=1; /* Maximum value of normalized numb#&r
result = tmp.f;
}
}

if(result < 0.0) abs = -result;
else abs = result;

Rev. 1.0, 08/98, page 195 of 385
HITACHI

tmp.l = 0x00800000; /* Minimum value of normalized numb&ft
if(abs < tmp.f) {
if(FPSCR_DN == 1) && (abs != 0.0)) {

set_1();
if(result < 0.0) result = -0.0; /* Zeroize denormalized number
*/
else result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;
}
void check_double_exception(double *dst,result)
{
union {
double d;
int I[2];
}otmp;
double abs;
if(result < 0.0) tmp.I[0] = Oxfff00000; /* — infinity */
else tmp.I[0] = 0x7ff00000; /* + infinity */

tmp.I[1] = 0x00000000;
if(result == tmp.d)
set_O();
if(FPSCR_RM == 1) {
tmp.I[0] -= 1;
tmp.I[1] = Oxffffffff;

result = tmp.d; /* Maximum value of normalized numb#&r

}
if(result < 0.0) abs = -result;
else abs = result;
tmp.I[0] = 0x00100000; /* Minimum value of normalized numb#&t
tmp.I[1] = 0x00000000;
if(abs < tmp.d) {
if(FPSCR_DN == 1) && (abs != 0.0)) {

Rev. 1.0, 08/98, page 196 of 385
HITACHI

set_1();
if(result < 0.0) result = -0.0;

/* Zeroize denormalized numb#r
else result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;
}
int check_product_invalid(int m,n)
{

return(check_product_infinity(m,n) &&
((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO)

(data_type_of(m) == NZERO) || (data_type_of(n) ==
NZERO)));

}
int check_ product_infinity(int m,n)
{
return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||
(data_type_of(m) == NINF) || (data_type_of(n) == NINF));
}
int check_ positive_infinity(int m,n)
{
return(((check_ product_infinity(m,n) && (~sign_of(m)"
sign_of(n))) |

((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)"
sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)"
sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)"
sign_of(n+3))));
}
int check_ negative_infinity(int m,n)
{

return(((check_ product_infinity(m,n) && (sign_of(m)” sign_of(n)))
|

Rev. 1.0, 08/98, page 197 of 385
HITACHI

((check_ product_infinity(m+1,n+1) && (sign_of(m+1)»
sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (sign_of(m+2)"
sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (sign_of(m+3)»
sign_of(n+3))));

}
void clear_cause () {FPSCR &= ~CAUSE;}
void set_E() {FPSCR |= SET_E;}
void set_V() {FPSCR |= SET_V;}
void set_Z() {FPSCR |= SET_Z;}
void set_O() {FPSCR |= SET_O;}
void set_U() {FPSCR |= SET_U;}
void set_I() {FPSCR |= SET_I;}
void invalid(int n)
{
set_V();
if(FPSCR & ENABLE_V) == 0 gnan(n);
else fpu_exception_trap();

void dz(int n,sign)

{
set_Z();
if(FPSCR & ENABLE_Z) == 0 inf(n,sign);
else fpu_exception_trap();
}
void zero(int n,sign)
{
if(sign ==0) FR_HEX [n] = 0x00000000;
else FR_HEX [n] = 0x80000000;
if FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;
}

void inf(int n,sign) {
if (FPSCR_PR==0) {
if(sign == 0) FR_HEX [n] = 0x7f800000;
else FR_HEX [n] = 0xff800000;
} else {

Rev. 1.0, 08/98, page 198 of 385
HITACHI

if(sign == 0) FR_HEX [n] = 0x7ff00000;
else FR_HEX [n] = Oxfff00000;
FR_HEX [n+1] = 0x00000000;

}
void gnan(int n)
{
if (FPSCR_PR==0) FR[n] = Ox7fbfffff;
else { FR[n] = OX7ff7ffff;
FR[n+1] = Oxffffffff;

}

Example

An example is shown using assembler mnemonics, indicating the states before and after

execution of the instruction.

Italics (e.g.,.align) indicate an assembler control instruction. The meaning of the assembler
control instructions is given below. For details, refer to the Cross-Assembler User's Manual.

.org Location counter setting

.data.w Word integer data allocation
.data.l Longword integer data allocation
.sdata String data allocation

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment
.align 32 32-byte boundary alignment
.arepeat 16 16-times repeat expansion
.arepeat 32 32-times repeat expansion
.aendr

Note:

HITACHI

Count-specification repeat expansion end

SH Series cross-assembler version 1.0 does not support conditional assembler functions.

Rev. 1.0, 08/98, page 199 of 385

10.1 ADD ADD binary Arithmetic Instruction

Binary Addition
Execution
Format Summary of Operation Instruction Code States T Bit
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm21100 1 —
ADD #imm,Rn Rn+imm - Rn 0111nnnniiiiiiii 1 —
Description

This instruction adds together the contents of general registers Rn and Rm and stores the result
in Rn.

8-bit immediate data can also be added to the contents of general register Rn.
8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

Operation

ADD(long m, long n) /* ADD Rm,Rn */
{

R[n]+=R[m];

PC+=2;

ADDI(long i, long n) /* ADD #imm,Rn */
{
if ((i&0x80)==0)
R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFFOO | (long)i);
PC+=2;

Rev. 1.0, 08/98, page 200 of 385
HITACHI

Example

ADD RO,R1 ;. Before execution RO = H'7FFFFFFF, R1 = H'00000001
: After execution R1 = H'S80000000

ADD #H'01,R2 : Before execution R2 = H'00000000
: After execution R2 = H'00000001

ADD #H'FE,R3 ;. Before execution R3 = H'00000001

: After execution R3 = H'FFFFFFFF

Rev. 1.0, 08/98, page 201 of 385
HITACHI

10.2 ADDC ADD with Carry Arithmetic Instruction

Binary Addition

with Carry
Execution
Format Summary of Operation Instruction Code States T Bit
ADDC Rm,Rn Rn+RmM+T - Rn, carry - T 0011nnnnmmmm1110 1 Carry
Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and
stores the result in Rn. A carry resulting from the operation is reflected in the T bit. This
instruction is used for additions exceeding 32 bits.

Operation

ADDC(long m, long n) /* ADDC Rm,Rn */

{
unsigned long tmp0,tmp1;

tmpl=R[n]+R[m];
tmpO=R[n];
R[n]=tmp1+T;
if (tmp0>tmp1l) T=1;
else T=0;
if (tmp1>R[n]) T=1;
PC+=2;

}

Example

CLRT ;RO:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)

ADDC R3,R1 ; Before execution T =0, R1 = H'00000001, R3 = H'FFFFFFFF
; After execution T =1, R1 =H'00000000

ADDC R2,R0 ; Before execution T = 1, RO = H'00000000, R2 = H'00000000
; After execution T =0, RO =H'00000001

Rev. 1.0, 08/98, page 202 of 385
HITACHI

10.3 ADDV ADD with (V flag) overflow check Arithmetic
Instruction

Binary Addition
with Overflow Check

Execution
Format Summary of Operation Instruction Code States T Bit
ADDV Rm,Rn Rn+Rm - Rn, 0011lnnnnmmmm1111 1 Overflow

overflow - T

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result
in Rn. If overflow occurs, the T bit is set.

Operation

ADDV(long m, long n) /* ADDV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[M]>=0) src=0;
else src=1;
src+=dest;
R[n]+=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;

Rev. 1.0, 08/98, page 203 of 385
HITACHI

Example

ADDV RO,R1 ;. Before execution RO = H'00000001, R1 = H'7FFFFFFE, T=0
. After execution R1 = H'7FFFFFFF, T=0
ADDV RO,R1 ;. Before execution RO = H'00000002, R1 = H'7FFFFFFE, T=0

: After execution R1 = H'80000000, T=1

10.4 AND AND logical Logical Instruction

Logical AND
Execution
Format Summary of Operation Instruction Code States T Bit
AND Rm,Rn Rm&Rm - Rn 0010nnnnmmmm1001 1 —
AND #mm,R0O RO & imm - RO 11001001iiiiiiii 1 —
AND.B #mm,@(R0,GBR) (RO+GBR) & imm — 1100110iiiiiii 4 —
(RO+GBR)
Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data.

Notes
With AND #imm,R0, the upper 24 bits of RO are always cleared as a result of the operation.
Operation

AND(long m, long n) /* AND Rm,Rn */
{

R[n]&=R[m];

PC+=2;

ANDI(long i) /* AND #imm,R0 */
{
R[0]&=(0x000000FF & (long)i);

PC+=2;
Rev. 1.0, 08/98, page 204 of 385
HITACHI

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;
}
Example
AND RO,R1 ; Before execution RO = HAAAAAAAA, R1=H'55555555
: After execution R1 = H'00000000
AND #H'OF,RO ; Before execution RO = H'FFFFFFFF
;. After execution RO = H'0000000F
AND.B #H'80,@(R0,GBR) ; Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'80

Rev. 1.0, 08/98, page 205 of 385
HITACHI

10.5 BF Branch if False Branch Instruction

Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BF label fT=0 10001011dddddddd 1 —
PC+4+dispx2 -~ PC
If T=1, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0,
and not taken if T = 1. The branch destination is address (PC + 4 + displace2)efihe PC

source value is the BF instruction address. As the 8-bit displacement is multiplied by two after
sign-extension, the branch destination can be located in the range from —256 to +254 bytes from
the BF instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in
combination with a BRA or JMP instruction, for example.

Operation

BF(intd) /* BF disp */

{
int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);
else disp=(0xFFFFFFOO | d);
if (T==0)
PC=PC+4+(disp<<1);
else PC+=2;

Rev. 1.0, 08/98, page 206 of 385
HITACHI

Example

CLRT ; Normally T=0
BT TRGET_T ; T =0, so branch is not taken.
BF TRGET_F ; T =0, so branch to TRGET_F.
NOP ;
NOP ;
TRGET_F: : « BF instruction branch destination

10.6 BF/S Branch if False with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BF/S label fT=0 10001111dddddddd 1 —
PC+4+dispx2 - PC
If T=1, nop
Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next
instruction is executed and the branch is not taken. If T = 0, the branch is taken after execution
of the next instruction.

The branch destination is address (PC + 4 + displacex@ntThe PC source value is the BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the
branch destination can be located in the range from —256 to +254 bytes from the BF/S
instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.
If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction,
it is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in
combination with a BF, BRA, or JMP instruction, for example.
Rev. 1.0, 08/98, page 207 of 385
HITACHI

Operation

BFS(intd) /* BFS disp */
{
int disp;

unsigned int temp;

temp=PC;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFFOO | d);

if (T==0)
PC=PC+4+(disp<<1);

else PC+=4;
Delay_Slot(temp+2);

}

Example

CLRT ; Normally T=0
BT/S TRGET_T ; T =0, so branch is not taken.
NOP ;
BF/S TRGET_F ; T =0, so branch to TRGET.
ADD RO,R1 ; Executed before branch.
NOP ;

TRGET_F: . « BF/S instruction branch destination

Rev. 1.0, 08/98, page 208 of 385
HITACHI

10.7 BRA BRAnNch Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRA label PC+4+dispx2 - PC 1010dddddddddddd 1 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 +
displacemenk 2). The PC source value is the BRA instruction address. As the 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located in
the range from —4096 to +4094 bytes from the BRA instruction. If the branch destination cannot
be reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRA(iIntd) /* BRA disp */
{
int disp;

unsigned int temp;

temp=PC;

if ((d&0x800)==0)
disp=(0x00000FFF & d);

else disp=(0xFFFFF0O0O0 | d);

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

Rev. 1.0, 08/98, page 209 of 385
HITACHI

Example

BRA TRGET ; Branch to TRGET.

ADD RO,R1 ; ADD executed before branch.

NOP ;

TRGET: : « BRA instruction branch destination
10.8 BRAF BRANch Far Branch Instruction
Unconditional Branch Delayed Branch Instruction
Execution

Format Summary of Operation Instruction Code States T Bit
BRAF Rn PC+4+Rn - PC 0000nnnNNn00100011 2 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn).
The branch destination address is the result of adding 4 plus the 32-bit contents of general
register Rn to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRAF(intn) /* BRAF Rn */
{

unsigned int temp;

temp=PC;
PC=PC+4+R][n];
Delay_Slot(temp+2);

Rev. 1.0, 08/98, page 210 of 385
HITACHI

Example

MOV.L #(TRGET-BRAF_PC),R0 ; Set displacement.

BRAF RO ; Branch to TRGET.

ADD RO,R1 ; DD executed before branch.
BRAF_PC: ;

NOP
TRGET: ;< BRAF instruction branch destination

10.9 BSR Branch to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSR label PC+4 - PR, 1011dddddddddddd 1 —

PC+4+dispx2 - PC

Description

This instruction branches to address (PC + 4 + displacex®ntand stores address (PC + 4) in

PR. The PC source value is the BSR instruction address. As the 12-hit displacement is multiplied
by two after sign-extension, the branch destination can be located in the range from —4096 to
+4094 bytes from the BSR instruction. If the branch destination cannot be reached, this branch
can be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Rev. 1.0, 08/98, page 211 of 385
HITACHI

Operation

BSR(intd) /* BSR disp */
{
int disp;

unsigned int temp;

temp=PC;

if ((d&0x800)==0)
disp=(0x00000FFF & d);

else disp=(0xFFFFF0O0O0 | d);

PR=PC+4;

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

}
Example
BSR TRGET ; Branch to TRGET.
MOV R3,R4 : MOV executed before branch.
ADD RO,R1 ; Subroutine procedure return destination (contents of PR)
TRGET: ; « Entry to procedure
MOV R2,R3 ;
RTS . Return to above ADD instruction.
MOV #1,R0 ; MOV executed before branch.

10.10 BSRFBranch to SubRoutine Far Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSRF Rn PC+4 - PR, 0000nnnNn00000011 2 —

PC+4+Rn - PC

Rev. 1.0, 08/98, page 212 of 385
HITACHI

Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC
source value is the BSRF instruction address. The branch destination address is the result of
adding the 32-bit contents of general register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSRF(intn) /* BSRF Rn */
{

unsigned int temp;

temp=PC;

PR=PC+4;

PC=PC+4+R][n];

Delay_Slot(tmp+2);
}

Example

MOV.L #(TRGET-BSRF_PC),R0 ; Set displacement.

BRSF RO ; Branch to TRGET.

MOV R3,R4 ; MOV executed before branch.
BSRF_PC: ;

ADD RO,R1 ;
TRGET: ;< Entry to procedure

MOV R2,R3 ;

RTS ; Return to above ADD instruction.

MOV #1,R0O ; MOV executed before branch.

Rev. 1.0, 08/98, page 213 of 385
HITACHI

10.11 BT Branch if True Branch Instruction

Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BT label fT=1 10001001dddddddd 1 —
PC+4+dispx2 - PC
If T=0, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T =1,
and not taken if T = 0.

The branch destination is address (PC + 4 + displacexi&niThe PC source value is the BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the
branch destination can be located in the range from —256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in
combination with a BRA or JMP instruction, for example.

Operation

BT(intd) /*BT disp*/

{
int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);
else disp=(0xFFFFFFOO | d);
if (T==1)
PC=PC+4+(disp<<1);
else PC+=2;

Rev. 1.0, 08/98, page 214 of 385
HITACHI

Example

SETT ; Normally T=1
BF TRGET_F ; T =1, so branch is not taken.
BT TRGET_T ; T =1, so branch to TRGET_T.
NOP ;
NOP ;
TRGET_T: . < BT instruction branch destination

10.12 BT/S Branch if True with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BT/S label fT=1 10001101dddddddd 1 —
PC+4+dispx2 - PC
If T=0, nop
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T =1,
and not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied by
two after sign-extension, the branch destination can be located in the range from —256 to +254
bytes from the BT/S instruction. If the branch destination cannot be reached, the branch must be
handled by using BT/S in combination with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

Rev. 1.0, 08/98, page 215 of 385
HITACHI

Operation

BTS(intd) /*BTS disp */
{
int disp;

unsigned temp;

temp=PC;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFFOO | d);

if (T==1)
PC=PC+4+(disp<<1);

else PC+=4;

Delay_Slot(temp+2);

}

Example

SETT ; Normally T=1
BF/S TRGET_F : T =1, so branch is not taken.
NOP ;
BT/S TRGET_T : T =1, so branch to TRGET_T.
ADD RO,R1 ; Executed before branch.
NOP ;
TRGET_T: . « BT/S instruction branch destination

Rev. 1.0, 08/98, page 216 of 385
HITACHI

10.13 CLRMAC CleaR MAC register System Control Instruction

MAC Register Clear

Execution
Format Summary of Operation Instruction Code States T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 1 —
Description
This instruction clears the MACH and MACL registers.
Operation
CLRMAC() /* CLRMAC */
{
MACH=0;
MACL=0;
PC+=2;
}
Example
CLRMAC ; Clear MAC register to initialize.
MAC.W @RO+@R1+ ; Multiply-and-accumulate operation
MAC.W @RO+@R1+ ;
10.14 CLRS CleaR S bit System Control Instruction
S Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRS 0-S 0000000001001000 1 —
Description

This instruction clears the S bit to 0.

Rev. 1.0, 08/98, page 217 of 385
HITACHI

Operation

CLRS() /*CLRS*

{
S=0;
PC+=2;
}
Example
CLRS :Before execution S =1
: After execution S =0
10.15 CLRT CleaR T bit System Control Instruction
T Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRT 0-T 0000000000001000 1 —
Description

This instruction clears the T bit.
Operation

CLRT() /*CLRT¥

{
T=0;
PC+=2;
}

Example

CLRT :Before execution T=1

: After execution T=0

Rev. 1.0, 08/98, page 218 of 385
HITACHI

10.16 CMP/cond CoMPare conditionally Arithmetic Instruction

Compare
Execution
Format Summary of Operation Instruction Code States T Bit
CMP/IEQ Rm,Rn IfRn=Rm,1-T 0011nnnnmmmm~O000 1 Result of
comparison
CMP/GE Rm,Rn IfRn=Rm,signed,1 - T 0011nnnnmmmmO0011 1 Result of
comparison
CMP/GT Rm,Rn IfRn>Rm,signed,1 - T 0011nnnnmmmmO0111 1 Result of
comparison
CMP/HI Rm,Rn If Rn > Rm, unsigned, 1 - T 0011nnnnmmmmO0110 1 Result of
comparison
CMP/HS Rm,Rn If Rn=Rm, unsigned, 1 -~ T 0011nnnnmmmmO0010 1 Result of
comparison
CMP/PL Rn IfRn>0,1-T 0100nnnn00010101 1 Result of
comparison
CMP/PZ Rn IfRN=20,1-T 0100nnnn00010001 1 Result of
comparison
CMP/STR Rm,Rn If any bytes are equal, 1 - T0010nnnnmmmm21100 1 Result of
comparison
CMP/EQ #imm,RO IfRO=imm,1 > T 10001000iiiiiiii 1 Result of
comparison
Description

This instruction compares general registers Rn and Rm, and sets the T bit if the specified
condition (cond) is true. If the condition is false, the T bit is cleared. The contents of Rn are not
changed. Nine conditions can be specified. For the two conditions PZ and PL, Rn is compared
with 0.

With the EQ condition, sign-extended 8-bit immediate data can be compared with RO. The
contents of RO are not changed.

Rev. 1.0, 08/98, page 219 of 385
HITACHI

Mnemonic Description

CMP/EQ Rm,Rn IfRN=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm as signed values, T=1
CMP/GT Rm,Rn If Rn > Rm as signed values, T=1
CMP/HI Rm,Rn If Rn > Rm as unsigned values, T =1
CMP/HS Rm,Rn If Rn = Rm as unsigned values, T =1
CMP/PL Rn IfRn>0,T=1

CMP/PZ Rn IfRN=0,T=1

CMP/STR Rm,Rn If any bytes are equal, T=1
CMP/EQ #imm,R0O IfRO=imm, T=1

Operation

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */
{

if (R[n]==R[m]) T=1,

else T=0;

PC+=2;
}
CMPGE(long m, long n) /* CMP_GE Rm,Rn */
{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

CMPGT(long m, long n) /* CMP_GT Rm,Rn */
{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

CMPHI(long m, long n) /* CMP_HI Rm,Rn */

{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;
else T=0;

Rev. 1.0, 08/98, page 220 of 385
HITACHI

PC+=2;

CMPHS(long m, long n)
{

/* CMP_HS Rm,Rn */

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2;

CMPPL(long n)
{

/* CMP_PL Rn */

if ((long)R[n]>0) T=1;
else T=0;
PC+=2;

CMPPZ(long n)
{

/* CMP_PZ Rn */

if ((long)R[n]>=0) T=1;
else T=0;
PC+=2;

CMPSTR(long m, long n)
{

/* CMP_STR Rm,Rn */

unsigned long temp;
long HH,HL,LH,LL;

temp=R[n]*R[m];
HH=(temp&0xFF000000)>>24;
HL=(temp&0x00FF0000)>>16;
LH=(temp&0x0000FF00)>>8;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&&LL;

if (HH==0) T=1,

else T=0;

HITACHI

Rev. 1.0, 08/98, page 221 of 385

PC+=2;

CMPIM(long i) /* CMP_EQ #mm,R0 */
{

long imm;

if ((1&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFFOO | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example

CMP/GE RO,R1
BT TRGET_T
CMP/HS RO,R1
BT TRGET_T

;. RO = H'7FFFFFFF, R1 = H'80000000
; T =0, so branch is not taken.

;. RO =H7FFFFFFF, R1 = H'80000000
; T = 1, so branch is taken.

CMP/STR R2,R3 ; R2 ="ABCD", R3 = "XYCZ"
BT TRGET_T ; T =1, so branch is taken.
10.17 DIV0OS DIVide (step 0) as Signed Arithmetic Instruction

Initialization for
Signed Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmm0O0111 1 Result of
MSB of Rm - M, calculation

MAQ - T

Description

This instruction performs initial settings for signed division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation
Rev. 1.0, 08/98, page 222 of 385
HITACHI

DIVOS(long m, long n) /* DIVOS Rm,Rn */
{

if (R[n] & 0x80000000)==0) Q=0;

else Q=1;

if (R[m] & 0x80000000)==0) M=0;

else M=1;

T=1(M==Q);

PC+=2;
}

Example

See the examples for the DIV1 instruction.

10.18 DIvVoU DIVide (step 0) as UnsignedArithmetic Instruction

Initialization for Unsigned Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOU 0 - M/IQIT 0000000000011001 1 0

Description

This instruction performs initial settings for unsigned division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DIVOU() /*DIVOU */

{
M:Q:T:O;
PC+=2;

}

Example

See the examples for the DIV1 instruction.

Rev. 1.0, 08/98, page 223 of 385
HITACHI

10.19 DIV1 DIVide 1 step Arithmetic Instruction

Division
Execution
Format Summary of Operation Instruction Code States T Bit
DIV1 Rm,Rn 1-step division 0011nnnnmmmm0O100 1 Result of
(Rn + Rm) calculation
Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general
register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by repeated
execution of this instruction alone or in combination with other instructions. The specified
registers and the M, Q, and T bits must not be modified during these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and
the quotient bit is reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV1
instruction:

(Remainder) = (dividend) — (divisor) x (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and
overflow division before executing the division. A remainder operation is not provided. Find the
remainder by finding the product of the divisor and the obtained quotient, and subtracting this
value from the dividend.

Initial settings should first be made with the DIVOS or DIVOU instruction. DIV1 is executed
once for each bit of the divisor. If a quotient of more than 16 bits is required, place an ROTCL
instruction before the DIV1 instruction. See the examples for details of the division sequence.

Operation

DIV1(long m, long n) /* DIV1 Rm,Rn */
{
unsigned long tmp0, tmp2;

unsigned char old_gq, tmp1;

old_g=Q;
Q=(unsigned char)((0x80000000 & R[n])!=0);
tmp2= R[m];

Rev. 1.0, 08/98, page 224 of 385
HITACHI

R[n]<<=1;
R[n]|=(unsigned long)T;

switch(old_q){
case 0:switch(M){
case 0:tmpO=R[n];

R[n]-=tmp2;

tmpl=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1,;
break;

case 1:Q=(unsigned char)(tmp1==0);
break;

}

break;

case 1:tmpO=R[n];

R[n]+=tmp2;

tmpl=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);
break;

case 1:Q=tmp1,;
break;

}

break;
}
break;
case 1:switch(M){
case 0:tmpO=R[n];
R[n]+=tmp2;
tmpl=(R[n]<tmp0);
switch(Q){
case 0:Q=tmp1,;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;

HITACHI

Rev. 1.0, 08/98, page 225 of 385

break;
case 1:tmpO=R[n];

R[n]-=tmp2;
tmpl=(R[n]>tmp0);
switch(Q){
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1:Q=tmpl,;
break;
}
break;
}
break;
}
T=(Q==M);
PC+=2;
}
Example 1
; R1 (32 bits) + RO (16 bits) = R1 (16 bits); unsigned
SHLL16 RO ; Set divisor in upper 16 bits, clear lower 16 bits to 0
TST RO,RO : Check for division by zero
BT ZERO_DIV ;
CMP/HS RO,R1 : Check for overflow
BT OVER_DIV ;
DIVOU ; Flag initialization
.arepeat 16 ;
DIV1 RO,R1 : Repeat 16 times
.aendr ;
ROTCL R1 ;
EXTUW R1,R1 ; R1=quotient

Rev. 1.0, 08/98, page 226 of 385
HITACHI

Example 2

; R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits); unsigned

TST RO,RO : Check for division by zero
BT ZERO_DIV ;
CMP/HS RO,R1 : Check for overflow
BT OVER_DIV ;
DIVOU ; Flag initialization
.arepeat 32 ;
ROTCL R2 ; Repeat 32 times
DIV1 RO,R1 ;
.aendr ;
ROTCL R2 ; R2 =quotient
Example 3
; R1 (16 bits) + RO (16 bits) = R1 (16 bits); signed
SHLL16 RO ; Set divisor in upper 16 bits, clear lower 16 bits to 0
EXTS.W R1,R1 ; Dividend sign-extended to 32 bits
XOR R2,R2 ; R2=0
MOV R1,R3 ;
ROTCL R3 ;
SUBC R2,R1 : If dividend is negative, subtract 1
DIVOS RO,R1 ; Flag initialization
.arepeat 16 ;
DIV1 RO,R1 : Repeat 16 times
.aendr ;
EXTS.W R1,R1 ;
ROTCL R1 ; R1 = quotient (one’s complement notation)
ADDC R2,R1 : If MSB of quotient is 1, add 1 to convert to two’s complement notation
EXTS.W R1,R1 ; R1 = quotient (two’s complement notation)

Rev. 1.0, 08/98, page 227 of 385
HITACHI

Example 4

MOV R2,R3
ROTCL R3

SUBC R1,R1
XOR R3,R3

SUBC R3,R2
notation

DIVOS RO,R1
.arepeat 32
ROTCL R2
DIVl RO,R1
.aendr

ROTCL R2
ADDC R3,R2

; R2 (32 bits) + RO (32 bits) = R2 (32 bits); signed

; Dividend sign-extended to 64 bits (R1:R2)
; R3=0

: If dividend is negative, subtract 1 to convert to one’s complement

; Flag initialization

; Repeat 32 times

; R2 = quotient (one’s complement notation)

: If MSB of quotient is 1, add 1 to convert to two’s complement notation

; R2 = quotient (two’s complement notation)

10.20 DMULS.L Double-length MULtiply as SignedArithmetic

Instruction

Signed Double-Length

Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULS.L Rm,Rn Signed, 0011nnnnmmmm1101 2-5 —
RnxRm -
MACH, MACL

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The
multiplication is performed as a signed arithmetic operation.

Rev. 1.0, 08/98, page 228 of 385

HITACHI

Operation

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{
unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]*R[M])<0) fnLmL=-1;
else fnLmL=0;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm);

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

tempO=RmL*RnL,

templ=RmH*RnL,;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0;

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;

if (ResO<tempO) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

Rev. 1.0, 08/98, page 229 of 385
HITACHI

if (fnLmL<0) {

Res2= ‘Res?;
if (Res0==0)
Res2++;
else
ResO=("Res0)+1;
}
MACH=Res2;
MACL=Res0;
PC+=2;
}
Example
DMULS.L RO,R1 : Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,R0 ;Get operation result (upper)
STS MACL,R1 ;et operation result (lower)

10.21 DMULU.L Double-length MULtiply as Unsigned Arithmetic
Instruction

Unsigned Double-Length Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit
DMULU.L Rm,Rn Unsigned, 0011nnnnmmmm0O0101 2-5 —
RnxRm -
MACH, MACL

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The
multiplication is performed as an unsigned arithmetic operation.

Rev. 1.0, 08/98, page 230 of 385
HITACHI

Operation

DMULU(long m, long n) /* DMULU.L Rm,Rn */

{
unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;

RNL=R[n]&0x0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmML=R[m]&0x0000FFFF;
RmH=(R[m]>>16)&0x0000FFFF;

tempO=RmL*RnL;

templ=RmH*RnL,;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0
Resl=templ+temp?2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;
if (ResO<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;
MACH=Res2;

MACL=ResO0;
PC+=2;

Rev. 1.0, 08/98, page 231 of 385
HITACHI

Example

DMULU.L RO,R1 : Before execution RO = H'FFFFFFFE, R1 = H'00005555

: After execution MACH = H'00005554, MACL = H'FFFF5556
STS MACH,R0 ;Get operation result (upper)
STS MACL,R1 ;Get operation result (lower)

10.22 DT Decrement and Test Arithmetic Instruction

Decrement and Test

Execution
Format Summary of Operation Instruction Code States T Bit
DT Rn Rn-1 - Rn; 0100nnnn00010000 1 Test
ifRn=0,1-T result

INnRn#0,0 - T

Description

This instruction decrements the contents of general register Rn by 1 and compares the result with
zero. If the result is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

Operation

DT(longn) /*DT Rn*

{
R[n]--;
if (R[n]==0) T=1;
else T=0;
PC+=2;

}

Example

MOV #4,R5 : Set loop count

LOOP:
ADD RO,R1 ;
DT R5 ; Decrement R5 value and check for 0.
BF LOOP ;1T =0, branch to LOOP (in this example, 4 loops are executed).

Rev. 1.0, 08/98, page 232 of 385
HITACHI

10.23 EXTSEXTend as Signed Arithmetic Instruction

Sign Extension

Execution
Format Summary of Operation Instruction Code States T Bit
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmm1110 1 —
byte — Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmm1111 1 —
word - Rn

Description
This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word
specification, the value of Rm bit 15 is transferred to Rn bits 16 to 31.

Operation

EXTSB(long m, long n) /* EXTS.B Rm,Rn */
{
R[n]=R[m];
if (R[m]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFQO;
PC+=2;

EXTSW(long m, long n) /* EXTS.W Rm,Rn */
{
R[n]=R[m];
if (R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

Rev. 1.0, 08/98, page 233 of 385
HITACHI

Example

EXTS.B RO,R1 ;. Before execution RO = H'00000080
; After execution R1 = H'FFFFFF80
;. Before execution RO = H'00008000

;. After execution R1 = H'FFFF8000

EXTS.W RO,R1

10.24 EXTU EXTend as Unsigned Arithmetic Instruction

Zero Extension

Execution
Format Summary of Operation Instruction Code States T Bit
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmm1100 1 —
byte — Rn
EXTU.W Rm,Rn Rm zero-extended from 0110nnnnmmmm1101 1 —
word - Rn

Description
This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is
transferred to Rn bits 16 to 31.

Operation

EXTUB(long m, long n) /* EXTU.B Rm,Rn */
{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

EXTUW(long m, long n) /* EXTU.W Rm,Rn */
{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

Rev. 1.0, 08/98, page 234 of 385
HITACHI

Example

EXTU.B RO,R1 . Before execution RO = H'FFFFFF80
. After execution R1 = H'00000080
EXTU.W RO,R1 ;. Before execution RO = H'FFFF8000

. After execution R1 = H'00008000

10.25 FABSFloating-point ABSolute value Floating-Point Instruction

Floating-Point
Absolute Value

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FABS FRn [FRn| - FRn 1111nnnn01011101 1 —
1 FABS DRn IDRn| - DRn 1111nnn001011101 1 —

Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DRn
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

void FABS (int n){
FR[n] = FR[n] & OxTfffffff;
pc += 2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 1.0, 08/98, page 235 of 385
HITACHI

10.26 FADD Floating-point ADD Floating-Point Instruction

Floating-Point Addition

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FADD FRm,FRn FRn+FRmM - FRn 1112nnnnmmmm~O000 1 —
1 FADD DRm,DRn DRn+DRm - DRn 1112nnnOmMmmmO0000 6 —

Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in
FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FADD (int m,n)
{
pc +=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)){
case NORM: switch (data_type_of(n))}{
case NORM: normal_faddsub(m,n,ADD); break;
case PZERO:
case NZERO:register_copy(m,n); break;
default: break;

Rev. 1.0, 08/98, page 236 of 385
HITACHI

} break;

case PZERO: switch (data_type_of(n))}{

case NZERO: zero(n,0); break;
default: break;
} break;
case NZERO: break;
case PINF: switch (data_type_of(n))}{
case NINF: invalid(n); break;
default: inf(n,0); break;
} break;
case NINF: switch (data_type_of(n)){
case PINF: invalid(n); break;
default: inf(n,1); break;
} break;
}
}
FADD Special Cases
FRmM,DRm FRn,DRnN
NORM | +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM ADD —INF
+0 +0
-0 -0
+INF +INF Invalid
—INF —~INF | Ivalid | -INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 1.0, 08/98, page 237 of 385
HITACHI

10.27 FCMP Floating-point CoMPare Floating-Point Instruction

Floating-Point
Comparison

Execution

PR Format Summary of Operation Instruction Code States T Bit

= O +» O

1. FCMP/EQ FRm,FRn (FRn==FRm)?1:0 - T 1111nnnnmmmmO0100 1 1/0
2. FCMP/EQ DRm,DRn (DRn==DRm)?1:0 -~ T 1111nnnOmmmO00100 1 1/0
3. FCMP/GT FRm,FRn (FRn>FRm)?1:0 - T 1112nnnnmmmmO0101 2 1/0
4. FCMP/GT DRm,DRn (DRn>DRm)?1:0 - T 1121nnnOMmmO0101 2 1/0

Description

1.

When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or O otherwise.
When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or O otherwise.
When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.
When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or O otherwise.

Operation

void FCMP_EQ(int m,n) /* FCMP/EQ FRm,FRn */

{
pc +=2;
clear_cause();
if(fcmp_chk (m,n) == INVALID) fcmp_invalid();
else if(fcmp_chk (m,n) == EQ) T =1,
else T=0;
}
void FCMP_GT(int m,n) /* FCMP/GT FRm,FRn */
{
pc += 2;

clear_cause();
if ((fcmp_chk (m,n) == INVALID) ||
(fcmp_chk (m,n) == UQ)) fcmp_invalid();

Rev. 1.0, 08/98, page 238 of 385
HITACHI

else if(fcmp_chk (m,n) == GT) T =1;
else T=0;
}
int fcmp_chk (int m,n)
{
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) return(INVALID);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN))
else switch(data_type_of(m)){
case NORM:
case PINF
case NINF
default:

} break;
case PZERO:
case NZERO: switch(data_type_of(n)){

case PZERO :

case NZERO :return(EQ); break;

default:

} break;
case PINF : switch(data_type_of(n)){

case PINF return(EQ); break;

default:return(LT);

} break;
case NINF : switch(data_type_of(n)){

case NINF :return(EQ); break;

default:return(GT);

} break;

return(UO);

switch(data_type_of(n)){
return(GT); break;
return(LT); break;

break;

break;

break;

break;

}

if(FPSCR_PR == 0) {
if(FR[N] == FR[m]) return(EQ);
else if(FR[n] > FR[m]) return(GT);
else return(LT);

lelse {
if(DR[N>>1] == DR[M>>1]) return(EQ);
else if(DR[n>>1] > DR[m>>1]) return(GT);

HITACHI

Rev. 1.0, 08/98, page 239 of 385

else return(LT);

}
}
void fcmp_invalid()
{
set_V(); Iif((FPSCR & ENABLE_V)==0) T=0;
}

FCMP Special Cases

FCMP/EQ FRn,DRn

FRm,DRm| NORM |DNORM| +0 | -0 +INF | —INF | gNaN

sNaN

NORM CMP
DNORM
+0 EQ
-0
+INF EQ

—INF EQ

gNaN

IEQ

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT FRn,DRn

FRm,DRm| NORM |DENORM| +0 | 0 +INF —INF

gNaN

sNaN

NORM CMP GT IGT
DENORM
+0 IGT
-0
+INF IGT IGT
—INF GT IGT
gNaN

uo

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.
UO means unordered. Unordered is treated as false (IGT).

Possible Exceptions:
Invalid operation

Rev. 1.0, 08/98, page 240 of 385
HITACHI

10.28 FCNVDS Floating-point CoNVert
Double to Single precision Floating-Point Instruction

Double-Precision
to Single-Precision

Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 — — — — —
1 FCNVDS DRm,FPUL (float)DRm - FPUL 1111mmm010111101 2 —
Description

When FPSCR.PR = 1: This instruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing
should therefore be performed by software.

Operation

void FCNVDS(int m){
case((FPSCR.PR){
0: undefined_operation(); /* reserved */
1: fcnvds(m); break; /* FCNVDS */

}

void fenvds(int m)
{
pc += 2;
clear_cause();
case(data_type_of(m, *FPUL)){
NORM :
PZERO :
NZERO : normal_ fcnvds(m); break;
DENORM : set_E();
PINF : *FPUL = 0x7f800000; break;

Rev. 1.0, 08/98, page 241 of 385
HITACHI

NINF : *FPUL = 0xff800000; break;

gNaN : *FPUL = Ox7fbfffff; break;

sNaN : set_V();
if((FPSCR & ENABLE_V) == 0) *FPUL =

Ox7fbfffff;

else fpu_exception_trap();

}

void normal_fcnvds(int m, float *FPUL)

{

int sign;

float abs;

union {
float f;
intl;

} dstf,tmpf;

union {
double d;
int I[2];

} dstd;

dstd.d = DR[m>>1];

if(dstd.I[1] & OxLfffffff)) set_I();

break;

if(FPSCR_RM == 1) dstd.I[1] &= 0xe0000000; /* round toward

zero*/
dstf.f = dstd.d;

check_single_exception(FPUL, dstf.f);

FCNVDS Special Cases

FRn

+NORM

—NORM

+0

-0

+INF

—INF

qgNaN

sNaN

FCNVDS(FRn FPUL)

FCNVDS

FCNVDS

+0

-0

+INF

—INF

gNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
» Overflow

Rev. 1.0, 08/98, page 242 of 385

HITACHI

e Underflow
* |nexact

10.29 FCNVSD Floating-point CoNVert
Single to Double precision Floating-Point Instruction

Single-Precision to Double-Precision Conversion

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 — — — — —

1 FCNVSD FPUL, DRn (double) FPUL - DRn 1111nnn010101101 2 —

Description

When FPSCR.PR = 1: This instruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

Operation

void FCNVSD(int n){
pc += 2;
clear_cause();
case((FPSCR_PR){
0: undefined_operation(); /* reserved */
1: fcnvsd (n,FPUL); break; /* FCNVSD */

}
}
void fcnvsd(int n, float *FPUL)
{
case(fpul_type(FPUL)X{
PZERO :
NZERO :
PINF :
NINF : DR[n>>1] = *FPUL; break;
DENORM : set_E(); break;
gNaN : gnan(n); break;
sNaN : invalid(n); break;
}

Rev. 1.0, 08/98, page 243 of 385
HITACHI

}

int fpul_type(int *FPUL)

{

int abs;

abs = *FPUL & OxT7fffffff;
if(abs < 0x00800000){
if((FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(src) == 0) return(PZERO);
return(NZERO);

else

}

else

}

return(DENORM);

else if(abs < 0x7f800000) return(NORM);

else if(abs == 0x7f800000) {

if(sign_of(src) == 0) return(PINF);
return(NINF);

else

}

else if(abs < 0x7fc00000) return(qNaN);

else

}

return(sNaN);

FCNVSD Special Cases

FRn

+NORM

—NORM

+0

-0

+INF

—INF

gNaN

sNaN

FCNVSD(FPUL FRn)

+NORM

—NORM

+0

-0

+INF

—INF

gNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation

Rev. 1.0, 08/98, page 244 of 385

HITACHI

10.30 FDIV Floating-point DIVide Floating-Point Instruction

Floating-Point Division

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmmm~O0011 10 —
1 FDIV DRm,DRn DRn/DRm - DRn 1111nnnOmmm0O0011 23 —

Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn
by the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FDIV(int m,n) /* FDIV FRm,FRn */
{
pc += 2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else switch (data_type_of(m)){
case NORM: switch (data_type_of(n))}{
case PINF:
case NINF: inf(n,sign_of(m)~sign_of(n));break;
case PZERO:
case NZERO: zero(n,sign_of(m)"sign_of(n));break;
case DENORM: set_E(); break;

default: normal_fdiv(m,n); break;

Rev. 1.0, 08/98, page 245 of 385
HITACHI

} break;
case PZERO: switch (data_type_of(n)}{
case PZERO:
case NZERO: invalid(n);break;
case PINF:
case NINF: break;
default: dz(n,sign_of(m)”sign_of(n));break;
} break;
case NZERO: switch (data_type_of(n)){
case PZERO:
case NZERO: invalid(n); break;
case PINF: inf(n,1); break;
case NINF: inf(n,0); break;
default: dz(FR[n],sign_of(m)"sign_of(n)); break;

} break;
case DENORM: set_E(); break;
case PINF :
case NINF : switch (data_type_of(n)){
case PINF:

case NINF: invalid(n); break;
default: zero(n,sign_of(m)"sign_of(n));break

} break;
}

}
void normal_fdiv(int m,n)
{
union {

float f;

intl;
} dstf,tmpf;
union {

double d;

int 1[2];
} dstd,tmpd;
union {

int double x;

int 1[4];

Rev. 1.0, 08/98, page 246 of 385
HITACHI

} o tmpx;

if(FPSCR_PR == 0) {

tmpf.f = FR[n]; /* save destination value */

dstf.f /= FR[m]; /* round toward nearest or even */

tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= FR[m];

if(tmpf.f 1= tmpd.d) set_I();

if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

dstf.| -= 1; /* round toward zero */

check_single_exception(&FR[n], dstf.f);

}else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d /= DR[m>>1]; /* round toward nearest or even */

tmpx.x = dstd.d; /* convert double to int double */

tmpx.x *= DR[m>>1];

if(tmpd.d != tmpx.x) set_I();

if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
dstd.I[1] -= 1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.I[0] -= 1;

}

check_double_exception(&DR[n>>1], dstd.d);

}

FDIV Special Cases

FRmM,DRm FRn,DRn
NORM +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM DIV 0 INF Error
+0 Dz Invalid +INF —INF Dz
-0 —INF +INF
+INF 0 +0 -0 Invalid
—INF -0 +0
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

HITACHI

Rev. 1.0, 08/98, page 247 of 385

Possible Exceptions:
* FPU error

* Invalid operation
» Divide by zero

* Overflow

* Underflow

* Inexact

10.31 FIPR Floating-point Inner
Product Floating-Point Instruction

Floating-Point
Inner Product

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FIPR FVm,FVvn FVn[FVm - FR[n+3] 1111nnmm11101101 1 —

Notes: FVO = {FRO, FR1, FR2, FR3}
FV4 = {FR4, FR5, FR6, FR7}
FV8 = {FR8, FRY, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional single-
precision floating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequence is as follows:

Multiplies all terms. The results are 28 bits long.
Aligns these results, rounding them to fit within 30 bits.
Adds the aligned values.

Performs normalization and rounding.

A

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.
2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
exception is generated.
Rev. 1.0, 08/98, page 248 of 385
HITACHI

3. In cases other than the above, if the input values include a gNaN, the result will be a gNaN.
4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, gNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FIPR(int m,n) /* FIPR FVm,FVn */
{
if(FPSCR_PR ==0) {
pc += 2;
clear_cause();
fipr(m,n);
}

else undefined_operation();

}

Possible Exceptions:
e Invalid operation

* Overflow
* Underflow
¢ |nexact

Rev. 1.0, 08/98, page 249 of 385
HITACHI

10.32 FLDIO Floating-point
LoaD Immediate 0.0 Floating-Point Instruction

0.0 Load
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLDIO FRn 0x00000000 - FRn 1111nnnn10001101 1 —
1 - - — — —
Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

Operation

void FLDIO(int n)

{
FR[n] = 0x00000000;

pc +=2;
}

Possible Exceptions:
None

Rev. 1.0, 08/98, page 250 of 385
HITACHI

10.33 FLDI1 Floating-point LoaD Immediate 1.0
Floating-Point Instruction

1.0 Load

Execution
Format Summary of Operation Instruction Code States T Bit
FLDI1 FRn 0x3F800000 — FRn 1111nnnn10011101 1 —
Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into FRn.

Operation

void FLDI1(int n)

{
FR[n] = 0x3F800000;

pc +=2;
}

Possible Exceptions:
None

10.34 FLDSFloating-point LoaD to System register
Floating-Point Instruction

Transfer to System Register

Execution
Format Summary of Operation Instruction Code States T Bit
FLDS FRm,FPUL FRm - FPUL 11121mmmmO00011101 1 —

Description

This instruction loads the contents of floating-point register FRm into system register FPUL.

Rev. 1.0, 08/98, page 251 of 385
HITACHI

Operation

void FLDS(int m, float *FPUL)

{
*FPUL = FR[m];
pc += 2;

}

Possible Exceptions:
None

10.35 FLOAT Floating-point convert from integer
Floating-Point Instruction

Integer to Floating-Point Conversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLOAT FPUL,FRn (float)FPUL - FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL - DRn 1111nnn000101101 2 —

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.l = 1, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Rev. 1.0, 08/98, page 252 of 385
HITACHI

Operation

void FLOAT(int n, float *FPUL)
{
union {
double d;
int I[2];
} o tmp;
pc += 2;
clear_cause();
if(FPSCR.PR==0){
FR[n] = *FPUL; /* convert from integer to float */
tmp.d = *FPUL;
if(tmp.I[1] & Ox1fffffff) inexact();
}else {
DR[n>>1] = *FPUL; /* convert from integer to double */

}

Possible Exceptions:
Inexact: Not generated when FPSCR.PR = 1.

Rev. 1.0, 08/98, page 253 of 385
HITACHI

10.36 FMAC Floating-point Multiply and ACcumulate Floating-

Point Instruction
Floating-Point Multiply and Accumulate

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FMAC FRO,FRm,FRn FRO*FRm+FRn - FRn 111lnnnnmmmm11101 —
1 — - — — —
Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision
floating-point numbers in FRO and FRm, arithmetically adds the contents of FRn, and stores the
result in FRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FMAC(int m,n)
{
pc +=2;
clear_cause();
if(FPSCR_PR == 1) undefined_operation();
else if((data_type_of(0) == sNaN) ||
(data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(0) == gNaN) ||
(data_type_of(m) == gNaN)) gnan(n);
else if((data_type_of(0) == DENORM) ||
(data_type_of(m) == DENORM)) set_E();
else switch (data_type_of(0){
case NORM: switch (data_type_of(m)){
case PZERO:
case NZERO: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;

Rev. 1.0, 08/98, page 254 of 385
HITACHI

case PZERO:

case NZERO: zero(n,sign_of(0)" sign_of(m)"sign_of(n));
break;

default: break;
}
case PINF:
case NINF: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PINF:
case NINF: if(sign_of(0)* sign_of(m)”~sign_of(n)) invalid(n);
else inf(n,sign_of(0)" sign_of(m)); break;
default: inf(n,sign_of(0)" sign_of(m)); break;
}
case NORM: switch (data_type_of(n))}{
case DENORM: set_E(); break;
case qNaN: gnan(n); break;
case PINF:
case NINF: inf(n,sign_of(n)); break;
case PZERO:
case NZERO:
case NORM: normal_fmac(m,n); break;
} break;
case PZERO:
case NZERO: switch (data_type_of(m)){
case PINF:
case NINF: invalid(n); break;
case PZERO:
case NZERO:
case NORM: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: qgnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)" sign_of(m)”sign_of(n));
break;
default: break;
} break;
} break;

Rev. 1.0, 08/98, page 255 of 385
HITACHI

case PINF :
case NINF : switch (data_type_of(m)){
case PZERO:
case NZERO: invalid(n); break;
default: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
default: inf(n,sign_of(0)"sign_of(m)"sign_of(n));break
} break;
} break;

}

void normal_fmac(int m,n)
{
union {
int double x;
int I[4];
1 dstx,tmpx;
float dstf,srcf;
if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denormalized value */
else srcf=FR[n];
tmpx.x = FR[O]; /* convert single to int double */
tmpx.x *= FR[m]; /* exact product */
dstx.x = tmpx.x + srcf;
if(((dstx.x == srcf) && (tmpx.x |= 0.0)) ||
((dstx.x == tmpx.x) && (srcf 1= 0.0))) {
set_I();
if(sign_of(0)" sign_of(m)”" sign_of(n)) {
dstx.I[3] -= 1; /* correct result */
if(dstx.I[3] == Oxffffffff) dstx.l[2] -= 1;
if(dstx.l[2] == Oxffffffff) dstx.l[1] -= 1;
if(dstx.I[1] == Oxffffffff) dstx.I[0] -= 1;
}
else dstx.I[3] |= 1,

}
if((dstx.I[1] & OxOLffffff) || dstx.I[2] || dstx.I[3]) set_I();

Rev. 1.0, 08/98, page 256 of 385
HITACHI

if(FPSCR_RM == 1) {

dstx.I[1] &= 0xfe000000; /* round toward zero */

dstx.I[2] = 0x00000000;
dstx.I[3] = 0x00000000;

}
dstf = dstx.x;

check_single_exception(&FR[n],dstf);
}

FMAC Special Cases

FRn FRO FRm
+Norm | -Norm +0 -0 +INF —INF Denorm | gNaN sNaN
Norm Norm MAC INF
0 Invalid
INF INF Invalid INF
+0 Norm MAC
0 +0 Invalid
INF INF Invalid INF
-0 +Norm MAC +0 -0 +INF —INF
—Norm -0 +0 —INF +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
INF INF Invalid INF
+INF +Norm +INF Invalid
—Norm +INF
0 Invalid
+INF Invalid +INF
—INF Invalid +INF +INF
-INF | +Norm | —INF | —INF
—Norm
0
+INF Invalid Invalid —INF
-INF | -INF [NF | invalid
Denorm Norm
0 Invalid
INF [Invalid
IsNaN | Denorm Error
gNaN 0 Invalid
INF [Invalid
Norm
IsNaN gNaN qNaN
All types | sNaN
SNaN | all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 1.0, 08/98, page 257 of 385

HITACHI

Possible Exceptions:

* FPU error
* Invalid operation
* Overflow
« Underflow
* Inexact
10.37 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point
Transfer

Summary of Execution
SZ Format Operation Instruction Code States T Bit
0 1. FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 1 —
1 2. FMOV DRm,DRn DRm - DRn 1111nnnOmmm01100 1 —
0 3.FMOV.SFRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 1 —
1 4. FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmm0O01010 1 —
0 5.FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmm31000 1 —
1 6.FMOV @Rm,DRn (Rm) - DRn 1111nnnOMmmm1000 1 —
0 7.FMOV.S @Rm+,FRn (Rm) - FRn,Rm+=4 1111nnnnmmmm31001 1 —
1 8. FMOV @Rm+,DRn (Rm) - DRn,Rm+=8 1111nnnOmmmm31001 1 —
0 9. FMOV.SFRm,@-Rn Rn-=4,FRm - (Rn) 111lnnnnmmmm210111 —
1 10. FMOV DRm,@-Rn Rn-=8,DRm - (Rn) 1111nnnnmmmoO01011 1 —
0 11. FMOV.S @(RO,Rm),FRn (RO+Rm) - FRn 1122nnnnmmmmO0110 1 —
1 12.FMOV @(RO,Rm),DRn (RO+Rm) - DRn 11221nnnOmMmmmO110 1 —
0 13. FMOV.S FRm, @(R0O,Rn) FRm - (RO+Rn) 1112nnnnmmmmO0111 1 —
1 14 FMOV DRm, @(RO,Rn) DRm - (RO+Rn) 1122nnnnmmmO00111 1 —
Description
1. This instruction transfers FRm contents to FRn.
2. This instruction transfers DRm contents to DRn.
3. This instruction transfers FRm contents to memory at address indicated by Rn.
4. This instruction transfers DRm contents to memory at address indicated by Rn.
5. This instruction transfers contents of memory at address indicated by Rm to FRn.
6. This instruction transfers contents of memory at address indicated by Rm to DRn.
7. This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4

to Rm.

Rev. 1.0, 08/98, page 258 of 385
HITACHI

8. This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8
to Rm.

9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. This instruction transfers contents of memory at address indicated by (RO + Rm) to FRn.
12. This instruction transfers contents of memory at address indicated by (RO + Rm) to DRn.
13. This instruction transfers FRm contents to memory at address indicated by (RO + Rn).
14. This instruction transfers DRm contents to memory at address indicated by (RO + Rn).

Operation

void FMOV(int m,n) /* FMOV FRm,FRn */
{
FR[n] = FR[m];
pc += 2;
}
void FMOV_DR(int m,n) /* FMOV DRm,DRn */
{
DR[n>>1] = DR[m>>1];
pc +=2;
}
void FMOV_STORE(int m,n) /* FMOV.S FRm,@Rn */
{
store_int(FR[m],R[n]);
pc += 2;
}
void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */
{
store_quad(DR[m>>1],R[n]);
pc +=2;
}
void FMOV_LOAD(int m,n) /* FMOV.S @Rm,FRn */
{
load_int(R[m],FR[n]);
pc +=2;

Rev. 1.0, 08/98, page 259 of 385
HITACHI

void FMOV_LOAD_DR(int m,n) /* FMOV @Rm,DRn */
{
load_quad(R[m],DR[n>>1]);
pc += 2;
}
void FMOV_RESTORE(int m,n) /* FMOV.S @Rm+,FRn */
{
load_int(R[m],FR[n]);
R[m] += 4;
pc +=2;
}
void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */
{
load_quad(R[m],DR[n>>1]) ;
R[m] +=8;
pc +=2;
}
void FMOV_SAVE(int m,n) /* FMOV.S FRm,@-Rn */
{
store_int(FR[m],R[n]-4);
R[] -= 4;
pc +=2;
}
void FMOV_SAVE_DR(int m,n) /* FMOV DRm,@-Rn */
{
store_quad(DR[m>>1],R[n]-8);
R[n] -= 8;
pc +=2;
}
void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */
{
load_int(R[0] + R[m],FR[n]);
pc +=2;
}
void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV @(R0,Rm),DRn */

{
load_quad(R[0] + R[m],DR[n>>1]);

Rev. 1.0, 08/98, page 260 of 385
HITACHI

pc += 2;

}
void FMOV_INDEX_STORE(int m,n) #FMOV.S FRm,@(R0,Rn)*/
{
store_int(FR[m], R[0] + R[n]);
pc += 2;
}
void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/
{
store_quad(DR[m>>1], R[0] + R[n]);
pc += 2;
}

Possible Exceptions:
e Data TLB miss exception

« Data protection violation exception
e Initial write exception
* Address error

Rev. 1.0, 08/98, page 261 of 385
HITACHI

10.38 FMOV Floating-point
MOVe extension Floating-Point Instruction

Floating-Point Transfer

Summary of Execution
PR Format Operation Instruction Code States T Bit
. FMOV XDm,@Rn XRm - (Rn) 1111nnnnmmm11010 1 —
. FMOV @Rm,XDn (Rm) - XDn 1111nnnImmmm31000 1 —

. FMOV @Rm+,XDn (Rm) - XDn,Rm+=8 1111nnn1lmmmm31001 1 —
. FMOV XDm,@-Rn Rn-=8,XDm - (Rn) 1111nnnnmmm11010 1 —
. FMOV @(R0O,Rm),XDn (RO+Rm) - XDn 1111nnnImmmm1011 1 —
. FMOV XDm,@(R0,Rn) XDm - (RO+Rn) 1112nnnnmmm10110 1 —

e I e N N T
© 0O N O U A W N R

. FMOV XDm,XDn XDm - XDn 1111nnn1mmm11100 1 —

. FMOV XDm,DRn XDm - DRn 1111nnnOmmm11100 1 —

. FMOV DRm,XDn DRm - XDn 1111nnn1mmm01100 1 —
Description

1. This instruction transfers XDm contents to memory at address indicated by Rn.
2. This instruction transfers contents of memory at address indicated by Rm to XDn.

3. This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8
to Rm.

4. This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

This instruction transfers contents of memory at address indicated by (RO + Rm) to XDn.
This instruction transfers XDm contents to memory at address indicated by (RO + Rn).
This instruction transfers XDm contents to XDn.

This instruction transfers XDm contents to DRn.

This instruction transfers DRm contents to XDn.

© 0 No v

Rev. 1.0, 08/98, page 262 of 385
HITACHI

Operation

void FMOV_STORE_XD(int m,n) /* FMOV XDm,@Rn */
{
store_quad(XD[m>>1],R[n]);
pc += 2;
}
void FMOV_LOAD_XD(int m,n) /* FMOV @Rm,XDn */
{
load_quad(R[m],XD[n>>1]);
pc += 2;
}
void FMOV_RESTORE_XD(int m,n) /* FMOV @Rm-+,DBn */
{
load_quad(R[m],XD[n>>1]);
R[m] +=8;
pc +=2;
}
void FMOV_SAVE_XD(int m,n) /* FMOV XDm,@-Rn */
{
store_quad(XD[m>>1],R[n]-8);
R[n] -= 8;
pc +=2;
}
void FMOV_INDEX_LOAD_XD(int m,n) /* FMOV @(RO,Rm),XDn */
{
load_quad(R[0] + R[m],XD[n>>1]);
pc +=2;
}
void FMOV_INDEX_STORE_XD(int m,n) /* FMOV XDm,@(RO,Rn) */
{
store_quad(XD[m>>1], R[O] + R[n]);
pc +=2;
}
void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */

{
XD[n>>1] = XD[m>>1];

Rev. 1.0, 08/98, page 263 of 385
HITACHI

pc += 2;

}
void FMOV_XDDR(int m,n) [* FMOV XDm,DRn */
{
DR[n>>1] = XD[m>>1];
pc += 2;
}
void FMOV_DRXD(int m,n) [* FMOV DRm,XDn */
{
XD[n>>1] = DR[m>>1];
pc += 2;
}

Possible Exceptions:
e Data TLB miss exception

« Data protection violation exception
e Initial write exception
* Address error

Rev. 1.0, 08/98, page 264 of 385
HITACHI

10.39 FMUL Floating-point MULtiply Floating-Point Instruction

Floating-Point Multiplication

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FMUL FRm,FRn FRn*FRmM - FRn 1112nnnnmmmmO0010 1 —
1 FMUL DRm,DRn DRn*DRm - DRn 1111nnnOmmmO0010 6 —

Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FMUL(int m,n)
{
pc += 2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m){
case NORM: switch (data_type_of(n))}{
case PZERO:
case NZERO: zero(n,sign_of(m)"sign_of(n)); break;
case PINF:

case NINF: inf(n,sign_of(m)~sign_of(n)); break;

Rev. 1.0, 08/98, page 265 of 385
HITACHI

default: normal_fmul(m,n); break;
} break;
case PZERO:
case NZERO: switch (data_type_of(n)){
case PINF:
case NINF: invalid(n); break;

default: zero(n,sign_of(m)"sign_of(n));break;

} break;
case PINF :
case NINF : switch (data_type_of(n)){
case PZERO:
case NZERO: invalid(n); break;
default: inf(n,sign_of(m)"sign_of(n));break
} break;
}

}

FMUL Special Cases

FRmM,DRm FRn,DRn
NORM +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
e Overflow

e Underflow

* Inexact

Rev. 1.0, 08/98, page 266 of 385
HITACHI

10.40 FNEG Floating-point NEGate value Floating-Point Instruction
Floating-Point Sign Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FNEG FRn -FRn - FRn 1111nnnn01001101 1 —
1 FNEG DRn -DRn - DRn 1111nnn001001101 1 —

Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point register
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

void FNEG (int n){
FR[n] = -FR[n];
pc +=2;

/* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 1.0, 08/98, page 267 of 385
HITACHI

10.41 FRCHG FR-bit CHanGe Floating-Point Instruction
FR Bit Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FRCHG FRSCR.FR=~FRSCR.FR 11111012111111101 1 —

Description

This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSCR

is changed, FRO to FR15 in FPPRO to FPPR31 become XRO to XR15, and XR0 to XR15 become
FRO to FR15. When FPSCR.FR = 0, FPPRO to FPPR15 correspond to FRO to FR15, and FPPR16
to FPPR31 correspond to XR0 to XR15. When FPSCR.FR = 1, FPPR16 to FPPR31 correspond
to FRO to FR15, and FPPRO to FPPR15 correspond to XRO0 to XR15.

Operation

void FRCHG() /* FRCHG */
{
if(FPSCR_PR == 0){
FPSCR "= 0x00200000; /* bit 21 */
PC +=2;
}

else undefined_operation();

}

Possible Exceptions:
None

Rev. 1.0, 08/98, page 268 of 385
HITACHI

10.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSCHG FRSCR.SZ=~FRSCR.SZ 1111001111111101 1 —

Description

This instruction inverts the SZ bit in floating-point register FPSCR. Changing the SZ bit in

FPSCR switches FMOV instruction data transfer between one single-precision data unit and a
data pair. When FPSCR.SZ = 0, the FMOV instruction transfers one single-precision data unit.
When FPSCR.SZ = 1, the FMOV instruction transfers two single-precision data units as a pair.

Operation

void FSCHG() /* FSCHG */
{
if(FPSCR_PR == 0){
FPSCR "= 0x00100000; /* bit 20 */
PC +=2;
}

else undefined_operation();

}

Possible Exceptions:
None

Rev. 1.0, 08/98, page 269 of 385
HITACHI

10.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction

Floating-Point Square Root

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSQRT FRn VvFRn - FRn 1111nnnn01101101 9 —
1 FSQRT DRn vDRn - DRn 1111nnnn01101101 22 —
Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point

number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point

number in DRn, and stores the result in DRn.

When FPSCR.enable.l is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should

therefore be performed by software.
Operation

void FSQRT(int n){
pc += 2;
clear_cause();
switch(data_type_of(n)){
case NORM : if(sign_of(n) == 0) normal_ fsqgrt(n);
else invalid(n); break;
case DENORM: if(sign_of(n) == 0) set_E();

else invalid(n); break;

case PZERO :

case NZERO :

case PINF : break;

case NINF : invalid(n); break;
case gNaN : gnan(n); break;
case sNaN : invalid(n); break;

}

void normal_fsqgrt(int n)

Rev. 1.0, 08/98, page 270 of 385
HITACHI

{

union {
float f;
intl;

} dstf,tmpf;

union {
double d;
int I[2];

} dstd,tmpd;

union {
int double x;
int I[4];

} tmpx;

if(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f = sgrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= dstf.f;
if(tmpf.f 1= tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))
dstf.l -= 1; /* round toward zero */
if(FPSCR & ENABLE_]) fpu_exception_trap();
else FR[n] = dstf.f;
} else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= dstd.d;
if(tmpd.d != tmpx.x) set_I();
if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
dstd.I[1] -= 1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.I[0] -= 1;

}
if(FPSCR & ENABLE_]) fpu_exception_trap();
else DR[n>>1] = dstd.d;

Rev. 1.0, 08/98, page 271 of 385
HITACHI

FSQRT Special Cases

FRn +NORM

—NORM

+0

-0

+INF

—INF

gNaN

sNaN

FSQRT(FRN)|[SQRT

Invalid

+0

-0

+INF

Invalid

gNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

« FPU error
* Invalid operation
e Inexact

Rev. 1.0, 08/98, page 272 of 385

HITACHI

10.44 FSTS Floating-point STore
System register Floating-Point Instruction
Transfer from
System Register

Execution
Format Summary of Operation Instruction Code States T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —

Description
This instruction transfers the contents of system register FPUL to floating-point register FRn.
Operation

void FSTS(int n, float *FPUL)

{
FR[n] = *FPUL,;
pc +=2;

}

Possible Exceptions:
None

Rev. 1.0, 08/98, page 273 of 385
HITACHI

10.45 FSUB Floating-point SUBtract Floating-Point Instruction
Floating-Point Subtraction

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSUB FRm,FRn FRn-FRm - FRn 1112nnnnmmmm~O001 1 —
1 FSUB DRm,DRn DRn-DRm - DRn 1111nnnOmmmO0001 6

Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in
FRm from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FSUB (int m,n)
{
pc += 2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)){
case NORM: switch (data_type_of(n))}{
case NORM: normal_faddsub(m,n,SUB); break;
case PZERO:
case NZERO: register_copy(m,n); FR[n] = -FR[n];break;
default: break;
} break;

Rev. 1.0, 08/98, page 274 of 385
HITACHI

case PZERO: break;
case NZERO: switch (data_type_of(n)){
case NZERO: zero(n,0); break;

default: break;
} break;
case PINF: switch (data_type_of(n))}{
case PINF: invalid(n); break;
default: inf(n,1); break;
} break;
case NINF: switch (data_type_of(n)){
case NINF: invalid(n); break;
default: inf(n,0); break;
} break;
}
}
FSUB Special Cases
FRmM,DRm FRn,DRn
NORM | +0 | -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM SUB +INF —INF
+0 | -0
-0 +0
+INF —INF Invalid
—INF +INF Invalid
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

* Invalid operation
e Overflow

e Underflow

* Inexact

HITACHI

Rev. 1.0, 08/98, page 275 of 385

10.46 FTRC Floating-point TRuncate and Convert to integer
Floating-Point Instruction
Conversion to Integer

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FTRC FRm,FPUL (long)FRm - FPUL 1112mmmmO00111101 1 —
1 FTRC DRm,FPUL (long)DRm - FPUL 1111mmmO000111101 2 —

Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.

When FPSCR.enable.l is set, an FPU exception is generated before the instruction is executed,
S0 appropriate processing should be performed by software.

Operation

#define N_INT_SINGLE_RANGE 0xcf000000 /* -1.000000 * 2731 */

#define P_INT_SINGLE_RANGE Ox4effffff /* 1 fffffe * 2730 */

#define N_INT_DOUBLE_RANGE 0xc1e00000 /* higher of -1.0000000000000 *
2731 %/

#define P_INT_DOUBLE_RANGE 0x41dfffff /* higher of 1.fffffffffffff *

2730 */

void FTRC(int m, int *FPUL)
{
pc +=2;
clear_cause();
if(FPSCR.PR==0){
case(ftrc_single_ type_of(m)){
NORM: *FPUL = FR[m]; break;
PINF: ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;
}

Rev. 1.0, 08/98, page 276 of 385
HITACHI

}

else{ [* case FPSCR.PR=1 */
case(ftrc_double_type_of(m)){
NORM: *FPUL = DR[m>>1]; break;
PINF: ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;
}

}
int ftrc_signle_type_of(int m)
{
if(sign_of(m) == 0){
if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */
else if(FR_HEX[m] > P_INT_SINGLE_RANGE)
return(PINF); /* out of range,+INF */
else return(NORM); /* +0,+NORM */
}else {
if(FR_HEX[m]< N_INT_SINGLE_RANGE)
return(NINF); /* out of range ,+INF,NaN*/

else return(NORM); /* -0,-NORM */
}
}
int ftrc_double_type_of(int m)
{

if(sign_of(m) == 0){
if((FR_HEX[m] > 0x7ff00000) ||
((FR_HEX[m] == 0x7ff00000) &&
(FR_HEX[m+1] != 0x00000000))) return(NINF); /* NaN

else if(FR_HEX[m] > P_INT_DOUBLE_RANGE)
return(PINF); /* out of range,+INF */
else return(NORM); /* +0,+NORM */
} else {
if(FR_HEX[m] < N_INT_DOUBLE_RANGE)
return(NINF); /* out of range ,+INF,NaN?*/
else return(NORM); /* -0,-NORM */

Rev. 1.0, 08/98, page 277 of 385
HITACHI

}

void ftrc_invalid(int sign, int *FPUL)

{
set_V();
if(FPSCR & ENABLE_V) == 0){
if(sign == 0) *FPUL = OxTIffffff;
else *FPUL = 0x80000000;
}
else fpu_exception_trap();
}
FTRC Special Cases
FRn,DRn NORM +0 —0 | Positive |Negative [+INF —INF gNaN | sNaN
Out of | Out of
Range | Range
FTRC TRC 0 Invalid |Invalid [Invalid |Invalid (Invalid |Invalid
(FRn,DRnN) +MAX —MAX +MAX —MAX —MAX —-MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error

* Invalid operation

Rev. 1.0, 08/98, page 278 of 385

HITACHI

10.47 FTRV Floating-point TRansform Vector
Floating-Point Instruction
Vector Transformation

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FTRV XMTRX,FVn XMTRX*FVn - FVn 1111nn0111111101 4 —
1 - - — — —
Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XF0 to XF15
indicated by XMTRX as a 4-row 4-column matrix, takes the contents of floating-point

registers FR[n] to FR[n + 3] indicated by FVn as a 4-dimensional vector, multiplies the array by
the vector, and stores the results in FV[n].

XMTRX FVn FVn
XF[0] XF[4] XF[8] XF[12] FR[n] FR[N]
XF[1] XF[5] XF[9] XF[13] | x | FRIn+1] | - | FR[n+1]
XF[2] XF[6] XF[10] XF[14] FR[N+2] FR[N+2]
XF[3] XF[7] XF[11] XF[15] FR[N+3] FR[n+3]

The FTRV instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequence is as follows:

Multiplies all terms. The results are 30 bits long.
Aligns these results, rounding them to fit within 28 bits.
Adds the aligned values.

Performs normalization and rounding.

A

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of O and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a gNaN, the result will be a gNaN.
4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

Rev. 1.0, 08/98, page 279 of 385
HITACHI

5. If the input values do not include an sNaN, gNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.V/O/U/l is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FTRV (intn) /*FTRV FVn */
{
float saved_vec[4],result_vec[4];
int saved_fpscr;
int dst,i;
if(FPSCR_PR ==0) {
PC +=2;
clear_cause();
saved_fpscr = FPSCR,;
FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */

dst=12 - n; /* select other vector than FVn */
for(i=0;i<4;i++) saved_vec [i] = FR[dst+i];
for(i=0;i<4;i++) {

for(j=0;j<4;j++) FR[dst+]] = XF[i+4j];

fipr(n,dst);

saved_fpscr |= FPSCR & (CAUSE|FLAG) ;
result_vec [i] = FR[dst+3];
}
for(i=0;i<4;i++) FR[dst+i] = saved_vec [i];
FPSCR = saved_fpscr;
if(FPSCR & ENABLE_VOUI) fpu_exception_trap();
else for(i=0;i<4;i++) FR[n+i] = result_vec [i];
}

else undefined_operation();

Rev. 1.0, 08/98, page 280 of 385
HITACHI

Possible Exceptions:
* Invalid operation

* Overflow
* Underflow
* |nexact

Rev. 1.0, 08/98, page 281 of 385
HITACHI

10.48 JMP JuMP Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JMP @Rn Rn - PC 0100nnnn00101011 2 —
Description

Unconditionally makes a delayed branch to the address specified by Rn.
Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

IJMP(intn) /* JIMP @Rn */
{

unsigned int temp;

temp=PC;
PC=R[n];
Delay_Slot(temp+2);
}
Example
MOV.L JMP_TABLE,RO ;RO = TRGET address
JMP @RO Branch to TRGET.
MOV RO,R1 ;MQOV executed before branch.
.align 4
JMP_TABLE: . data.l TRGET Jump table
TRGET: ADD #1,R1 ; « Branch destination

Rev. 1.0, 08/98, page 282 of 385
HITACHI

10.49 JSR Jump to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JSR @Rn PC+4 - PR, Rn - PC 0100nnnn00001011 2 —
Description

This instruction makes a delayed branch to the subroutine procedure at the specified address
after execution of the following instruction. Return address (PC + 4) is saved in PR, and a
branch is made to the address indicated by general register Rn. JSR is used in combination with
RTS for subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JSR(int n) /*JSR @Rn */
{

unsigned int temp;

temp=PC;
PR=PC+4;

PC=R[n];
Delay_Slot(temp+2);

Rev. 1.0, 08/98, page 283 of 385
HITACHI

Example

MOV.L JSR_TABLE,RO ; RO = TRGET address
JSR @RO Branch to TRGET.
XOR R1,R1 : XOR executed before branch.
ADD RO,R1 ; « Procedure return destination (PR contents)
.align 4
JSR_TABLE: . data.] TRGET ;Jump table
TRGET: NOP ;< Entry to procedure
MOV R2,R3 ;
RTS :Return to above ADD instruction.
MOV #70,R1 : MOV executed before RTS.

Rev. 1.0, 08/98, page 284 of 385
HITACHI

10.50 LDC LoaD to Control register ~ System Control Instruction
Load to Control Register

Execution

Format Summary of Operation Instruction Code States T Bit
LDC Rm, SR Rm - SR 0100mmmmO00001110 4 LSB
LDC Rm, GBR Rm - GBR 0100mmmmO00011110 3 —
LDC Rm, VBR Rm - VBR 0100mmmmO00101110 1 —
LDC Rm, SSR Rm - SSR 0100mmmmO00111110 1 —
LDC Rm, SPC Rm - SPC 0100mmmmO01001110 1

LDC Rm, DBR Rm - DBR 0100mmmm11111010 1 —
LDC Rm, RO_BANK Rm -, RO_BANK 0100mmmm10001110 1 —
LDC Rm, R1_BANK Rm - R1_BANK 0100mmmm310011110 1 e
LDC Rm, R2_BANK Rm - R2_BANK 0100mmmm10101110 1 e
LDC Rm, R3_BANK Rm - R3_BANK 0100mmmm10111110 1 —
LDC Rm, R4 BANK Rm - R4_BANK 0100mmmm11001110 1 —
LDC Rm, R5 BANK Rm - R5_BANK 0100mmmm11011110 1 —
LDC Rm, R6_BANK Rm - R6_BANK 0100mmmm11101110 1 —
LDC Rm, R7_BANK Rm - R7_BANK 0100mmmm11111110 1 —
LDC.L @Rm+, SR (Rm) - SR, Rm+4 - Rm 0100mmmmO00000111 4 LSB
LDC.L @Rm+, GBR (Rm) - GBR, Rm+4 -, Rm 0100mmmm00010111 3 —
LDC.L @Rm+, VBR (Rm) - VBR, Rm+4 - Rm 0100mmmmO00100111 1 —
LDC.L @Rm+, SSR (Rm) - SSR, Rm+4 - Rm 0100mmmmO00110111 1 —
LDC.L @Rm+, SPC (Rm) - SPC, Rm+4 - Rm 0100mmmmO01000111 1 —
LDC.L @Rm+, DBR (Rm) - DBR, Rm+4 - Rm 0100mmmm11110110 1 —
LDC.L @Rm+, RO_BANK (Rm) - RO_BANK, Rm+4 . Rm 0100mmmm10000111 1 —
LDC.L @Rm+, R1_BANK (Rm) - R1_BANK, Rm+4 - Rm 0100mmmm10010111 1 —
LDC.L @Rm+, R2_BANK (Rm) - R2_BANK, Rm+4 . Rm 0100mmmm10100111 1 —
LDC.L @Rm+, R3_BANK (Rm) - R3_BANK, Rm+4 . Rm 0100mmmm10110111 1 —
LDC.L @Rm+, R4_BANK (Rm) - R4_BANK, Rm+4 . Rm 0100mmmm11000111 1 —
LDC.L @Rm+, R5_BANK (Rm) - R5_BANK, Rm+4 . Rm 0100mmmm11010111 1 —
LDC.L @Rm+, R6_BANK (Rm) - R6_BANK, Rm+4 . Rm 0100mmmm11100111 1 —
LDC.L @Rm+, R7_BANK (Rm) - R7_BANK, Rm+4 . Rm 0100mmmm11110111 1 —

Rev. 1.0, 08/98, page 285 of 385
HITACHI

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC,
DBR, or RO_BANK to R7_BANK.

Notes

With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L instructions are
privileged instructions and can only be used in privileged mode. Use in user mode will cause an
illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can also be used
in user mode.

With the LDC Rm, Rn_BANK and LDC.L @Rm, Rn_BANK instructions, Rn_BANKO is
accessed when the RB bit in the SR register is 1, and Rn_BANK1 is accessed when this bit is 0.

Operation

LDCSR(intm) /*LDC Rm,SR : Privileged */
{

SR=R[m]&0x700083F3;

PC+=2;
}

LDCGBR(intm) /*LDC Rm,GBR */
{

GBR=R[m];

PC+=2;
}

LDCVBR(intm) /*LDC Rm,VBR : Privileged */
{

VBR=R[m];

PC+=2;
}

LDCSSR(intm) /*LDC Rm,SSR : Privileged */
{

SSR=R[m],

PC+=2;
}

Rev. 1.0, 08/98, page 286 of 385
HITACHI

LDCSPC(intm) /*LDC Rm,SPC : Privileged */
{

SPC=R[m];

PC+=2;
}

LDCDBR(intm) /* LDC Rm,DBR : Privileged */
{

DBR=R[m];

PC+=2;
}

LDCRn_BANK(int m) /* LDC Rm,Rn_BANK : Privileged */
/* n=0-7 */
{
Rn_BANK=R[m];
PC+=2;
}

LDCMSR(intm) /*LDC.L @Rm+,SR : Privileged */
{

SR=Read_Long(R[m])&0x700083F3;

R[m]+=4;

PC+=2;
}

LDCMGBR(intm) /*LDC.L @Rm+,GBR */
{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMVBR(intm) /*LDC.L @Rm+,VBR : Privileged */
{

VBR=Read_Long(R[m]);

R[m]+=4;

Rev. 1.0, 08/98, page 287 of 385
HITACHI

PC+=2;

LDCMSSR(intm) /*LDC.L @Rm+,SSR : Privileged */
{

SSR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMSPC(intm) /*LDC.L @Rm+,SPC : Privileged */
{

SPC=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMDBR(intm) /*LDC.L @Rm+,DBR : Privileged */
{

DBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMRn_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */
[* n=0-7*/
{
Rn_BANK=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}

Rev. 1.0, 08/98, page 288 of 385
HITACHI

Possible Exceptions:

General illegal instruction exception
lllegal slot instruction exception

Data TLB miss exception

Data TLB protection violation exception
Address error

HITACHI

Rev. 1.0, 08/98, page 289 of 385

10.51 LDS LoaD to FPU System register

System Control Instruction
Load to FPU System Register

Execution
Format Summary of Operation Instruction Code States T Bit
LDS Rm,FPUL Rm - FPUL 0100mmmm01011010 1 —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 -~ Rm 0100mmmm010101101 —
LDS Rm,FPSCR Rm - FPSCR 0100mmmm01101010 1 —

LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+4 - Rm 0100mmmm01100110 1 —

Description
This instruction loads the source operand into FPU system registers FPUL and FPSCR.
Operation

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int FPUL) /* LDS Rm,FPUL */

{
*FPUL=R[m];
PC+=2;
}
LDSMFPUL(int m, int FPUL) /*LDS.L @Rm+,FPUL */
{
*FPUL=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDSFPSCR(int m) /* LDS Rm,FPSCR */
{
FPSCR=R[m] & FPSCR_MASK;
PC+=2;
}
LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */
{
FPSCR=Read_Long(R[m]) & FPSCR_MASK;
R[m]+=4;

Rev. 1.0, 08/98, page 290 of 385
HITACHI

PC+=2;
}

Possible Exceptions:
» Data TLB miss exception

» Data access protection exception
» Address error

Rev. 1.0, 08/98, page 291 of 385
HITACHI

10.52 LDS LoaD to System register System Control Instruction
Load to System Register

Execution
Format Summary of Operation Instruction Code States T Bit
LDS Rm,MACH Rm - MACH 0100mmmm~O00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmm~00011010 1 —
LDS Rm,PR Rm- PR 0100mmmm~00101010 2 —

LDS.L @Rm+,MACH (Rm) - MACH, Rm + 4 -, Rm0100mmmm00000110 1 —
LDS.L @Rm+MACL (Rm) - MACL, Rm +4 - Rm 0100mmmm00010110 1 —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 -~ Rm 0100mmmm00100110 2 —

Description
Stores the source operand into the system registers MACH, MACL, or PR.
Operation

LDSMACH(int m) /* LDS Rm,MACH */
{

MACH=R[m];

PC+=2;

LDSMACL(intm) /*LDS Rm,MACL */
{

MACL=R[m];

PC+=2;

LDSPR(intm) /*LDS Rm,PR */
{

PR=R[m];

PC+=2;

LDSMMACH(int m) /*LDS.L @Rm+,MACH */

{
MACH=Read_Long(R[m]);
Rev. 1.0, 08/98, page 292 of 385
HITACHI

R[m]+=4;
PC+=2;

LDSMMACL(intm) /*LDS.L @Rm+,MACL */
{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

LDSMPR(intm) /*LDS.L @Rm+,PR */
{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

Example

LDS RO,PR ; Before executionR0O = H'12345678, PR = H'00000000
. After execution PR = H'12345678
;. Before execution R215 = H'10000000

. After execution R15 = H'10000004, MACL = (H'100000000)

LDS.L @R15+MACL

Rev. 1.0, 08/98, page 293 of 385
HITACHI

10.53 LDTLB LoaD PTEH/PTEL/PTEA to TLB

System Control Instruction
Load to TLB (Privileged Instruction)

Execution
Format Summary of Operation Instruction Code States T Bit
LDTLB PTEH/PTEL/PTEA - TLB 0000000000111000 1 —

Description

This instruction loads the contents of the PTEH/PTEL/PTEA registers into the TLB (translation
lookaside buffer) specified by MMUCR.URC (random counter field in the MMC control
register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

As this instruction loads the contents of the PTEH/PTEL/PTEA registers into a TLB, it should
be used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled
(see section 3, Memory Management Unit, for details). After this instruction is issued, there
must be at least one instruction between the LDTLB instruction and issuance of an instruction
relating to address to areas PO, U0, and P3 (i.e. BRAF, BSRF, JMP, JSR, RTS, or RTE).

Rev. 1.0, 08/98, page 294 of 385
HITACHI

Operation

LDTLB() /*LDTLB */

{

TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.

URC] .ASID=PTEH & 0x000000FF;

URC] .VPN=(PTEH & OxFFFFFC00)>>10;
URC] .PPN=(PTEH & Ox1FFFFC00)>>10;
URC] .SZ=(PTEL & 0x00000080)>>6 |

(PTEL & 0x00000010)>>4;

TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.
TLB[MMUCR.

PC+=2;
}

Example

MOV @RO,R1
MOV R1,@R2
LDTLB

URC] .SH=(PTEH & 0x00000002)>>1;
URC] .PR=(PTEH & 0x00000060)>>5;
URC] .WT=(PTEH & 0x00000001);
URC] .C=(PTEH & 0x00000008)>>3;
URC] .D=(PTEH & 0x00000004)>>2;
URC] .V=(PTEH & 0x00000100)>>8;
URC] .SA=(PTEA & 0x00000007);
URC] .TC=(PTEA & 0x00000008)>>3;

; Load page table entry (upper) into R1
; Load R1 into PTEH; R2 is PTEH address (H'FFFFFFFO)
; Load PTEH, PTEL, PTEA registers into TLB

Rev. 1.0, 08/98, page 295 of 385
HITACHI

10.54 MAC.L Multiply and ACcumulate Long Arithmetic Instruction
Double-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.L @Rm+,@Rn+ Signed, 0000nnnnmmmm1111 2-5 —
(Rn) x (Rm) + MAC - MAC
Rn+4 - Rn,Rm+4 - Rm
Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 64-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 4 each time
they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bitis 1, the addition to the MAC register contents is a saturation operation at the 48th bit
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid,

and the result range is limited to H'FFFF800000000000 (minimum value) to
H'00007FFFFFFFFFFF (maximum value).

Operation

MACL(long m, long n) /* MAC.L @Rm+,@Rn+ */

{
unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[m]+=4;

if ((long)(tempn~tempm)<0) fnLmL=-1;
else fnLmL=0;
if (tempn<0) tempn=0-tempn;

Rev. 1.0, 08/98, page 296 of 385
HITACHI

if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;

temp2=(unsigned long)tempm);

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;
tempO=RmL*RnL;
templ=RmH*RnL,;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0;

Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;

if (ResO<tempO0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLmL<0){

Res2= "Res2;

if (Res0==0) Res2++;

else Res0=("Res0)+1;
}
if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

if (MACH&0x00008000);

else Res2+=MACH|0xFFFF0000;
Res2+=MACH&0x00007FFF;

HITACHI

Rev. 1.0, 08/98, page 297 of 385

if(((long)Res2<0)&&(Res2<0xFFFF8000))1{
Res2=0xFFFF8000;
Res0=0x00000000;

}

if(((long)Res2>0)&&(Res2>0x00007FFF)){
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

MACH=(Res2&0x0000FFFF)|(MACH&OXFFFF0000);

MACL=Res0;
}
else {
Res0=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=MACH,;
MACH=Res2;
MACL=Res0;
}
PC+=2;
}
Example
MOVA TBLM,RO Get table address
MOV RO,R1 ;
MOVA TBLN,RO Get table address
CLRMAC MAC register initialization
MAC.L @RO+,@R1+ ;
MAC.L @RO+,@R1+ ;
STS MACL,RO :Get result in RO
.align 2 ;
TBLM .data.l H'1234ABCD ;
.data.l H'5678EF01 ;
TBLN .data.l H'0123ABCD ;
.data.l H'4567DEFO :

Rev. 1.0, 08/98, page 298 of 385
HITACHI

10.55 MAC.W Multiply and ACcumulate Word Arithmetic

Instruction
Single-Precision
Multiply-and-Accumulate
Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.W @Rm+,@Rn+ Signed, 0100nnnnmmmm1111 2-5 —

MAC @Rm+,@Rn+ (Rn) X (Rm) + MAC - MAC
Rn+2 - Rn,Rm+2 - Rm

Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 32-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 2 each time
they are read.

If the S bitis 0, a 1& 16 + 64 64-bit multiply-and-accumulate operation is performed, and
the 64-bit result is stored in the linked MACH and MACL registers.

If the S bitis 1, a 1& 16 + 32 32-bit multiply-and-accumulate operation is performed, and
the addition to the MAC register contents is a saturation operation. In a saturation operation,
only the MACL register is valid, and the result range is limited to H'80000000 (minimum value)
to H7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register is set to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflows in the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the
positive direction

Notes

If the S bitis 0, a 1& 16 + 64 64-bit multiply-and-accumulate operation is performed.

Rev. 1.0, 08/98, page 299 of 385
HITACHI

Operation

MACW(long m, long n) /* MAC.W @Rm+,@Rn+ */

{

long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n]+=2;
tempm=(long)Read_Word(R[m]);
R[m]+=2;
templ=MACL;
tempm=((long)(short)tempn*(long)(short)tempm);
if (long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0) {

src=0;

tempn=0;
}
else {

src=1;

tempn=0xFFFFFFFF;
}
src+=dest;
MACL+=tempm);
if (long)MACL>=0) ans=0;
else ans=1,;
ans+=dest;
if (S==1) {

if (ans==1) {

if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1;

Rev. 1.0, 08/98, page 300 of 385
HITACHI

PC+=2;
}
Example

MOVA TBLM,RO Get table address
MOV RO,R1 ;
MOVA TBLN,RO Get table address
CLRMAC MAC register initialization
MAC.W @RO+,@R1+ ;
MAC.W @RO+,@R1+ :
STS MACL,RO :Get result in RO
align 2 :

TBLM .data.w H'1234 :
.data.w H'5678 :

TBLN .data.w H'0123 :
.data.w H'4567 :

Rev. 1.0, 08/98, page 301 of 385
HITACHI

10.56 MOV
Data Transfer

MOVe Data Data Transfer Instruction

Execution

Format Summary of Operation Instruction Code States T Bit

MOV Rm,Rn

MOV.B Rm,@Rn
MOV.W Rm,@Rn
MOV.L Rm,@Rn
MOV.B @Rm,Rn
MOV.W @Rm,Rn
MOV.L @Rm,Rn
MOV.B Rm,@-Rn
MOV.W Rm,@-Rn
MOV.L Rm,@-Rn
MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

Rm - Rn

Rm - (Rn)

Rm - (Rn)

Rm - (Rn)

(Rm) sign extension Rn
(Rm) sign extension Rn
(Rm) - Rn

Rn-1 -~ Rn, Rm - (Rn)
Rn-2 - Rn,Rm - (Rn)
Rn-4 -~ Rn, Rm - (Rn)

(Rm) sign extension Rn,
Rm+1 - Rm

(Rm) sign extension Rn,
Rm+2 - Rm

0110nnnnmmmmO011 1
0010nnnNnmmmmO000 1
0010nnnnmmmmO001 1
0010nnnnmmmmO010 1
0110nnnnmmmmO000 1
0110nnnnmmmmO001 1
0110nnnnmmmmO010 1
0010nnnNnmmmmO100 1
0010nnnnmmmmO101 1
0010nnnnmmmmO110 1
0110nnnnmmmmO100 1

0110nnnnmmmmoO0101 1

MOV.L @Rm+,Rn (Rm) - Rn, Rm+4 - Rm 0110nnnnmmmm0O0110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO+Rn) 0000nNnNNMmMmmO100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnNNMmMmmO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO+Rn) 0000nnNNMmMmMmO110 1 —

MOV.B @(R0O,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnmmmm21100 1 —
MOV.W @(RO,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnmmmm1101 1 —
MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000nNNNMmMmMmM1110 1 —

Description

This instruction transfers the source operand to the destination. When an operand is memory, the
data size can be specified as byte, word, or longword. When the source operand is memory, the
loaded data is sign-extended to longword before being stored in the register.

Rev. 1.0, 08/98, page 302 of 385
HITACHI

Operation

MOV(long m, long n) /* MOV Rm,Rn */
{

R[n]=R[m];

PC+=2;

MOVBS(long m, long n) /* MOV.B Rm,@Rn */
{

Write_Byte(R[n],R[m]);

PC+=2;

MOVWS(long m, long n) /* MOV.W Rm,@Rn */
{

Write_Word(R[n],R[m]);

PC+=2;

MOVLS(long m, long n) /* MOV.L Rm,@Rn */
{

Write_Long(R[n],R[m]);

PC+=2;

MOVBL(long m, long n) /* MOV.B @Rm,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if (R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;
PC+=2;

MOVWL(long m, long n) /* MOV.W @Rm,Rn */

{
R[n]=(long)Read_Word(R[m]);

HITACHI

Rev. 1.0, 08/98, page 303 of 385

if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

MOVLL(long m, long n) /* MOV.L @Rm,Rn */
}

R[n]=Read_Long(R[m]);

PC+=2;

MOVBM(long m, long n) /* MOV.B Rm,@-Rn */
{

Write_Byte(R[n]-1,R[m]);

R[n]-=1;

PC+=2;

MOVWM(long m, long n) /* MOV.W Rm,@-Rn */
{

Write_Word(R[n]-2,R[m]);

R[n]-=2;

PC+=2;

MOVLM(long m, long n) /* MOV.L Rm,@-Rn */
{

Write_Long(R[n]-4,R[m]);

R[n]-=4;

PC+=2;

MOVBP(long m, long n) /* MOV.B @Rm+,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if (R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;

Rev. 1.0, 08/98, page 304 of 385
HITACHI

if (n'=m) R[m]+=1,;
PC+=2;
}
MOVWP(long m, long n) /* MOV.W @Rm+,Rn */
{
R[n]=(long)Read_Word(R[m]);
if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
if (n'=m) R[m]+=2;
PC+=2;

MOVLP(long m, long n) /* MOV.L @Rm+,Rn */
{

R[n]=Read_Long(R[m]);

if (n!I=m) R[m]+=4;

PC+=2;

MOVBSO(long m, long n) /* MOV.B Rm,@(R0,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

MOVWSO0(long m, long n) /* MOV.W Rm,@(RO,Rn) */
{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

MOVLSO(long m, long n) /* MOV.L Rm,@(RO,Rn) */

{
Write_Long(R[n]+R[0],R[M]);
PC+=2;

HITACHI

Rev. 1.0, 08/98, page 305 of 385

MOVBLO(long m, long n) /* MOV.B @(R0O,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);
if (R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFQO;

PC+=2;

MOVWLO(long m, long n) /* MOV.W @(R0O,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);
if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2;

MOVLLO(long m, long n) /* MOV.L @(RO,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Example

MOV
MOV.W
MOV.B
MOV.W
MOV.L
MOV.B

MOV.W

RO,R1

RO,@R1
@RO,R1

RO,@-R1
@RO+,R1
R1,@(RO,R2)

@(RO,R2),R1

:Before execution
: After execution

Before execution
;. After execution
Before execution
;. After execution
Before execution
: After execution
:Before execution
: After execution

; Before execution

: After execution
: Before execution
: After execution

Rev. 1.0, 08/98, page 306 of 385

RO = HFFFFFFFF, R1 = H'00000000
R1 = HFFFFFFFF

RO = H'FFFF7F80

(R1) = H'7F80

(RO) = H'80, R1 = H'00000000

R1 = HFFFFFF80

RO = HAAAAAAAA, (R1) = H'FFFF7F80
R1 = HFFFF7F7E, (R1) = HAAAA
RO = H'12345670

RO = H'12345674, R1 = (H'12345670)
R2 = H'00000004, RO = H'10000000
R1 = (H'10000004)

R2 = H'00000004, RO = H'10000000
R1 = (H'10000004)

HITACHI

10.57 MOV MOVe constant value Data Transfer Instruction
Immediate Data Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —
MOV.W @(disp,PC),Rn (dispx2+PC+4) - sign 1001nnnndddddddd 1 —
extension Rn
MOV.L @(disp,PC),Rn (dispx4+PC+4) - Rn 1101nnnndddddddd 1 —

Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In the
case of word or longword data, the data is stored from memory address (PC + 4 + displacement
x 2) or (PC + 4 + displacemertd).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the table is in the range up to PC + 4 + 510 bytes. The PC value is the
address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the
relative distance from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the
address of this instruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception
will be generated.

Rev. 1.0, 08/98, page 307 of 385
HITACHI

Operation

MOVI(int i, int n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & i);
else R[n]=(0xFFFFFFOO | i);
PC+=2;

MOVWI(d, n) /* MOV.W @(disp,PC),Rn */

{

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);
R[n]=(int)Read_Word(PC+4+(disp<<1));

if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2;

MOVLI(int d, int n)/* MOV.L @(disp,PC),Rn */

unsigned int disp;

disp=(unsigned int)(0x000000FF & (int)d);

R[n]=Read_Long((PC&O0xFFFFFFFC)+4+(disp<<2));
PC+=2;

Rev. 1.0, 08/98, page 308 of 385
HITACHI

Example

Address
1000
1002
H'08)
1004
1006
1008
100A
100C
100E IMM
1010
1012 NEXT
1014

1018
101C

MOV
MOV.W

ADD
TST
MOV.L
BRA
NOP

.data.w

.data.w
JMP

CMP/EQ

.align
.data.l
.data.l

#H'80,R1 . R1=HFFFFFF80
IMM,R2 ;R2 = HFFFF9ABC IMM means (PC + 4 +

#-1,R0 ;

RO,RO ;

@(3,PC),R3 ; R3=H'12345678

NEXT Delayed branch instruction

H'9ABC ;
H'1234 ;
@R3 BRA branch instruction
#0,R0O ;

4

H'12345678 ;

H'OABCDEFO ;

Rev. 1.0, 08/98, page 309 of 385
HITACHI

10.58 MOV MOVe global data Data Transfer Instruction
Global Data Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B @(disp,GBR),R0 (disp+GBR) - sign 11000100dddddddd 1 —

extension RO

MOV.W @(disp,GBR), RO (dispx2+GBR) - sign 11000101dddddddd 1 —
extension RO

MOV.L @(disp,GBR),RO (dispx4+GBR) -~ RO 11000110dddddddd
MOV.B RO,@(disp,GBR) RO - (disp+GBR) 11000000dddddddd
MOV.W RO,@(disp,GBR) RO — (dispx2+GBR) 11000001dddddddd
MOV.L RO,@(disp,GBR) RO - (dispx4+GBR) 11000010dddddddd

N A =

Description

This instruction transfers the source operand to the destination. Byte, word, or longword can be
specified as the data size, but the register is always RO. If the transfer data is byte-size, the 8-bit
displacement is only zero-extended, so a range up to +255 bytes can be specified. If the transfer
data is word-size, the 8-bit displacement is multiplied by two after zero-extension, enabling a
range up to +510 bytes to be specified. With longword transfer data, the 8-bit displacement is
multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading, the destination register is always RO.

Rev. 1.0, 08/98, page 310 of 385
HITACHI

Operation

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */

{

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);
R[0]=(int)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFQO;

PC+=2;

MOVWLG(int d) /* MOV.W @(disp,GBR),R0 */

{

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);

R[0]=(int)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

PC+=2;

MOVLLG(int d) /* MOV.L @(disp,GBR),R0 */

{

}

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);
R[0]=Read_Long(GBR+(disp<<2));
PC+=2;

MOVBSG(int d) /* MOV.B RO,@(disp,GBR) */

{

unsigned int disp;

HITACHI

Rev

. 1.0, 08/98, page 311 of 385

disp=(unsigned int)(0Ox000000FF & d);
Write_Byte(GBR+disp,R[0]);
PC+=2;

MOVWSG(int d) /* MOV.W RO,@(disp,GBR) */

{
unsigned int disp;
disp=(unsigned int)(0Ox000000FF & d);
Write_ Word(GBR+(disp<<1),R[0]);
PC+=2;

}

MOVLSG(int d) /* MOV.L R0,@(disp,GBR) */

{
unsigned int disp;
disp=(unsigned int)(0Ox000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;
}
Example

MOV.L @(2,GBR),R0 ; Before execution @(GBR+8) = H'12345670
: After execution RO = @H'12345670
MOV.B RO,@(1,GBR) ; Before execution RO = H'FFFF7F80
; After execution @ (GBR+1) = H'FFFF7F80

Rev. 1.0, 08/98, page 312 of 385
HITACHI

10.59 MOV MOVe structure data Data Transfer Instruction
Structure Data Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B RO,@(disp,Rn) RO - (disp+Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO - (dispx2+Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm - (dispx4+Rn) 0001nnnnmmmmdddd 1 —
MOV.B @(disp,Rm),RO (disp+Rm) - sign 10000100mmmmdddd 1 —
extension RO
MOV.W @(disp,Rm),RO (dispx2+Rm) - sign 10000101mmmmdddd 1 —
extension RO
MOV.L @(disp,Rm),Rn (dispx4+Rm) - Rn 0101nnnnmmmmdddd 1 —

Description

This instruction transfers the source operand to the destination. It is ideal for accessing data
inside a structure or stack. Byte, word, or longword can be specified as the data size, but with
byte or word data the register is always RO.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero-
extension, enabling a range up to +30 bytes to be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytes to be
specified. If a memory operand cannot be reached, the previously described @(R0,Rn) mode
must be used.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading byte or word data, the destination register is always RO. Therefore, if the
following instruction attempts to reference RO, it is kept waiting until completion of the load
instruction. This allows optimization by changing the order of instructions.

MOV.B @(2,R1),R0 MOV.B @(2,R1),R0
AND #80,RO ADD #20,R1
ADD #20,R1 AND #80,RO

Rev. 1.0, 08/98, page 313 of 385
HITACHI

Operation

MOVBS4(long d, long n /* MOV.B RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;

MOVWS4(long d, long n) /* MOV.W RO,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Word(R[n]+(disp<<1),R[0]);
PC+=2;

MOVLS4(long m, long d, long n) /* MOV.L Rm,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

MOVBL4(long m, long d) /* MOV.B @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFF00

PC+=2;

Rev. 1.0, 08/98, page 314 of 385
HITACHI

MOVWL4(long m, long d) /* MOV.W @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

PC+=2;

MOVLL4(long m, long d, long n) /* MOV.L @(disp,Rm),Rn */

{
long disp;

disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;
}
Example
MOV.L @(2,R0),R1 ; Before execution @(R0+8) = H'12345670
: After execution R1 = @H'12345670
MOV.L RO,@(H'F,R1) ;. Before execution RO = H'FFFF7F80

; After execution @(R1+60) = H'FFFF7F80

Rev. 1.0, 08/98, page 315 of 385
HITACHI

10.60 MOVA MOVe effective address Data Transfer Instruction
Effective Address Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOVA @(disp,PC),R0 dispx4+PC+4 - RO 11000111dddddddd 1 —

Description

This instruction stores the source operand effective address in general register RO. The 8-bit
displacement is multiplied by four after zero-extension. The PC value is the address of this
instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If this instruction is executed in a delay slot, an illegal slot instruction exception will be
generated.

Operation

MOVA(int d) /* MOVA @(disp,PC),R0 */
{

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);
R[0]=(PC&OxFFFFFFFC)+4+(disp<<2);
PC+=2;

}

Example

Address .org H'1006

1006 MOVA STR,RO ; STR address- RO
1008 MOV.B @RO,R1 i R="X" < Position after adjustment of lower 2 bits of PC
100A ADD R4,R5 ; ~ Original PC position in MOVA instruction address
calculation

.align 4
100C STR:.sdata "XYzP12"

Rev. 1.0, 08/98, page 316 of 385
HITACHI

10.61 MOVCA.L MOVe with Cache block Allocation

Data Transfer Instruction
Cache Block Allocation

Execution
Format Summary of Operation Instruction Code States T Bit
MOVCA.L RO,@Rn RO - (Rn) 0000nnNnNNn11000011 1 —

Description

This instruction stores the contents of general register RO in the memory location indicated by
effective address Rn. This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will
be allocated but an RO data write will be performed to that cache block without performing a
block read. Other cache block contents are undefined.

Operation

MOVCAL(intn) /*MOVCA.L RO,@Rn */

{

if ((is_write_back_memory(R[n]))
&& (look_up_in_operand_cache(R[n]) == MISS))
allocate_operand_cache_block(R[n]);

Write_Long(R[n], R[0]);
PC+=2;

}

Possible Exceptions:
» Data TLB miss exception

» Data TLB protection violation exception
 Initial page write exception
* Address error

Rev. 1.0, 08/98, page 317 of 385
HITACHI

10.62 MOVT MOVe T bit Data Transfer Instruction
T Bit Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOVT Rn T - Rn 0000nnNnn00101001 1 —

Description

This instruction stores the T bit in general register Rn. When T =1, Rn=1; when T =0, Rn =0.

Operation
MOVT(long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);
PC+=2;
}
Example
XOR R2,R2 ‘R2=0
CMP/PZ R2 T=1
MOVT RO RO=1
CLRT T=0
MOVT R1 R1=0

Rev. 1.0, 08/98, page 318 of 385
HITACHI

10.63 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision

Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MUL.L Rm,Rn RnxRm - MACL 0000nNnnNnmmmmO111 2-5 —
Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm,
and stores the lower 32 bits of the result in the MACL register. The contents of MACH are not
changed.

Operation

MULL(long m, long n) /* MUL.L Rm,Rn */

{
MACL=R[n]*R[m];
PC+=2;
}
Example
MUL.L RO,R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL,RO ;Get operation result

Rev. 1.0, 08/98, page 319 of 385
HITACHI

10.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
Signed Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmm1111 2-5 —

MULS Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm,
and stores the 32-bit result in the MACL register. The multiplication is performed as a signed
arithmetic operation. The contents of MACH are not changed.

Operation

MULS(long m, long n) /* MULS Rm,Rn */

{
MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2;
}
Example
MULS.W RO,R 1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL,RO ;Get operation result

Rev. 1.0, 08/98, page 320 of 385
HITACHI

10.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
Unsigned Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm - MACL 0010nnnnmmmm1110 2-5 —
MULU Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm,
and stores the 32-bit result in the MACL register. The multiplication is performed as an
unsigned arithmetic operation. The contents of MACH are not changed.

Operation

MULU(long m, long n) /* MULU Rm,Rn */

{
MACL=((unsigned long)(unsigned short)R[n]*
(unsigned long)(unsigned short)R[m];
PC+=2;

}

Example

MULU.W RO,R1 ;Before execution RO = H'00000002, R1 = H'FFFFAAAA
; After execution MACL = H'00015554
STS MACL,RO ;Get operation result

Rev. 1.0, 08/98, page 321 of 385
HITACHI

10.66 NEG NEGate Arithmetic Instruction
Sign Inversion

Execution
Format Summary of Operation Instruction Code States T Bit
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 1 —

Description

This instruction finds the two’s complement of the contents of general register Rm and stores the
result in Rn. That is, it subtracts Rm from 0 and stores the result in Rn.

Operation

NEG(long m, long n) /* NEG Rm,Rn */
{

R[n]=0-R[m];

PC+=2;
}

Example

NEG RO,R1 ; Before execution RO = H'00000001
; After execution R1 = H'FFFFFFFF

Rev. 1.0, 08/98, page 322 of 385
HITACHI

10.67 NEGC NEGate with Carry Arithmetic Instruction
Sign Inversion with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
NEGC Rm,Rn 0-Rm-T - Rn, 0110nnnnmmmm21010 1 Borrow

borrow - T

Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the
result in Rn. A borrow resulting from the operation is reflected in the T bit. The NEGC
instruction is used for sign inversion of a value exceeding 32 bits.

Operation

NEGC(long m, long n) /* NEGC Rm,Rn */

{
unsigned long temp;
temp=0-R[m];
R[n]=temp-T;
if (O<temp) T=1;
else T=0;
if (temp<R[n]) T=1;
PC+=2;
}
Example
CLRT ; Sign inversion of RO:R1 (64 bits)
NEGC R1,R1 ;Before execution R1 = H'00000001, T=0
; After execution R1 = H'FFFFFFFF, T1=
NEGC RO,RO ; Before execution RO = H'00000000, T =1

; After execution RO =HFFFFFFFF, T=1

Rev. 1.0, 08/98, page 323 of 385
HITACHI

10.68 NOP No OPeration System Control Instruction
No Operation

Execution
Format Summary of Operation Instruction Code States T Bit
NOP No operation 0000000000001001 1 —

Description

This instruction simply increments the program counter (PC), advancing the processing flow to
execution of the next instruction.

Operation

NOP() /* NOP */

{
PC+=2;

}
Example

NOP ;Time equivalent to one execution state elapses.

Rev. 1.0, 08/98, page 324 of 385
HITACHI

10.69 NOT NOT-logical complement Logical Instruction

Bit Inversion
Execution
Format Summary of Operation Instruction Code States T Bit
NOT Rm,Rn [Rm - Rn 0110nnnnmmmm0O0111 1 —
Description

This instruction finds the one’s complement of the contents of general register Rm and stores the
result in Rn. That is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m, long n) /* NOT Rm,Rn */

{
R[n]}= [R[m];
PC+=2;

}

Example

NOT RO,R1 ; Before executionR0O = HAAAAAAAA
; After execution R1 = H'55555555

Rev. 1.0, 08/98, page 325 of 385
HITACHI

10.70 OCBiI Operand Cache Block Invalidate Data Transfer

Instruction
Cache Block Invalidation
Execution
Format Summary of Operation Instruction Code States T Bit
OCBI @Rn Operand cache block 0000nnnNn10010011 1 —

invalidation

Description

This instruction accesses data using the contents indicated by effective address Rn. In the case of
a hit in the cache, the corresponding cache block is invalidated (the V bit is cleared to 0). If

there is unwritten information (U bit = 1), write-back is not performed even if write-back mode

is selected. No operation is performed in the case of a cache miss or an access to a non-cache
area.

Operation

OCBI(int n) /* OCBI @Rn */

{
invalidate_operand_cache_block(R[n]);
PC+=2;

}

Possible Exceptions:
» Data TLB miss exception

» Data TLB protection violation exception
 Initial page write exception
» Address error

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 1.0, 08/98, page 326 of 385
HITACHI

10.71 OCBP Operand Cache Block Purge
Data Transfer Instruction
Cache Block Purge

Execution
Format Summary of Operation Instruction Code States T Bit
OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache
is hit and there is unwritten information (U bit = 1), the corresponding cache block is written
back to external memory and that block is invalidated (the V bit is cleared to 0). If there is no
unwritten information (U bit = 0), the block is simply invalidated. No operation is performed in
the case of a cache miss or an access to a non-cache area.

Operation

OCBP(int n) /* OCBP @Rn */

{
if(is_dirty_block(R[n])) write_back(R[n])
invalidate_operand_cache_block(R[n]);
PC+=2;

}

Possible Exceptions:
» Data TLB miss exception

» Data TLB protection violation exception
» Address error

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 1.0, 08/98, page 327 of 385
HITACHI

10.72 OCBWB Operand Cache Block Write Back
Data Transfer Instruction
Cache Block Write-Back

Execution
Format Summary of Operation Instruction Code States T Bit
OCBWB @Rn Operand cache block write- 0000nnnn11010011 1 —

back

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache
is hit and there is unwritten information (U bit = 1), the corresponding cache block is written

back to external memory and that block is cleaned (the U bit is cleared to 0). In other cases (i.e.
in the case of a cache miss or an access to a non-cache area, or if the block is already clean), no
operation is performed.

Operation

OCBWB(intn) /* OCBWB @Rn */
{
if(is_dirty_block(R[n])) write_back(R[n]);
PC+=2;
}

Possible Exceptions:
» Data TLB miss exception

» Data TLB protection violation exception
» Address error

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 1.0, 08/98, page 328 of 385
HITACHI

10.73 OR OR logical Logical Instruction

Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 —
OR #imm,R0O RO |imm - RO 1100101 1iiiiiiii 1 —
OR.B#imm,@(R0,GBR) (RO+GBR) | imm - 1100111 Liiiiiiii 4 —
(RO+GBR)
Description

This instruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to OR general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit
immediate data.

Rev. 1.0, 08/98, page 329 of 385
HITACHI

Operation

OR(long m, long n) /* OR Rm,Rn */
{

R[n]|=R[m];

PC+=2;

ORI(long i) /* OR #imm,R0 */

{
R[0]|=(0x000000FF & (long)i);

PC+=2;

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{
long temp;
temp=(long)Read_Byte(GBR+R][0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;
}
Example
OR RO,R1 : Before execution RO = H'AAAA5555, R1 = H'55550000
. After execution R1 = H'FFFF5555
OR #H'FO,RO ;. Before execution RO = H'00000008

. After execution RO = H'000000F8

OR.B #H'50,@(RO,GBR) ; Before execution @(R0,GBR) = H'A5
; After execution @(R0,GBR) = H'F5

Rev. 1.0, 08/98, page 330 of 385
HITACHI

10.74 PREF PREFetch data to cache Data Transfer Instruction
Prefetch to Data

Cache
Execution
Format Summary of Operation Instruction Code States T Bit
PREF @Rn Prefetch cache block 0000nnnNn10000011 1 —
Description

This instruction reads a 32-byte data block starting at a 32-byte boundary into the operand cache.
The lower 5 bits of the address specified by Rn are masked to zero.

This instruction does not generate address-related errors. In the event of an error, the PREF
instruction is treated as an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

{
PC+=2;
}
Example

MOV.L SOFT_PF,R1 ; R1 address is SOFT_PF
PREF @R1 ;Load SOFT_PF data into on-chip cache
.align 32

SOFT_PF: .data.l H'12345678
.data.l H'9ABCDEFO
.data.l H'AAAA5555
.data.l H'5S555AAAA
.data.l H'11111111
.data.l H'22222222
.data.l H'33333333
.data.l H'44444444

Rev. 1.0, 08/98, page 331 of 385
HITACHI

10.75 ROTCL ROTate with Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCL Rn T<Rn T 0100nnnn00100100 1 MSB

Description

This instruction rotates the contents of general register Rn one bit to the left through the T bit,
and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCL <

Operation

ROTCL(long n) /* ROTCL Rn */
{

long temp;

if (R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Example

ROTCL RO ; Before execution RO = H'80000000, T=0
; After execution RO = H'00000000, T=1

Rev. 1.0, 08/98, page 332 of 385
HITACHI

10.76 ROTCR ROTate with Carry Right Shift Instruction
One-Bit Right Rotation through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

Description

This instruction rotates the contents of general register Rn one bit to the right through the T bit,
and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCR |—>

ROTCR(long n) /* ROTCR Rn */
{

Operation

long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Example

ROTCR RO ;Before execution RO =H'00000001, T=1
; After execution RO = H'80000000, T=1

Rev. 1.0, 08/98, page 333 of 385
HITACHI

10.77 ROTL ROTate Left Shift Instruction
One-Bit Left Rotation

Execution
Format Summary of Operation Instruction Code States T Bit
ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB

Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTL 4—\

ROTL(long n) /* ROTL Rn */

Operation

{
if ((R[n]&0x80000000)==0) T=0;
else T=1,;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
PC+=2;

}

Example
ROTL RO ; Before execution RO = H'80000000, T =0

; After execution RO =H'00000001, T=1

Rev. 1.0, 08/98, page 334 of 385
HITACHI

10.78 ROTR ROTate Right Shift Instruction
One-Bit Right Rotation

Execution
Format Summary of Operation Instruction Code States T Bit
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB

Description

This instruction rotates the contents of general register Rn one bit to the right, and stores the
result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTR |—>

ROTR(long n) /* ROTR Rn */

Operation

{
if ((R[n]&0x00000001)==0) T=0;
else T=1,;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example
ROTR RO ; Before execution RO = H'00000001, T=0

; After execution RO = H'80000000, T=1

Rev. 1.0, 08/98, page 335 of 385
HITACHI

10.79 RTE ReTurn from Exception System Control Instruction
Return from Exception Handling (Privileged Instruction)
Delayed Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
RTE SSR - SR, SPC- PC 0000000000101011 5 —

Description

This instruction returns from an exception or interrupt handling routine by restoring the PC and
SR values from SPC and SSR. Program execution continues from the address specified by the
restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instruction
in user mode will cause an illegal instruction exception.

Notes

As this is a delayed branch instruction, the instruction following the RTE instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception
must not be generated by the instruction in this instruction’s delay slot. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction,
it is identified as a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from SSR
by the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetch
the instruction in the RTE delay slot.

Rev. 1.0, 08/98, page 336 of 385
HITACHI

Operation

RTE() /* RTE */
{
unsigned int temp;
temp=PC;
SR=SSR;
PC=SPC;
Delay_Slot(temp+2);
}

Example

RTE ; Return to original routine.
ADD #8,R14 . Executed before branch.

Note: In a delayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) is in fact performed in
delayed branch instruction delay slot instruction order. For example, even if the
register holding the branch destination address is modified in the delay slot, the branch
destination address will still be the register contents prior to the modification.

Rev. 1.0, 08/98, page 337 of 385
HITACHI

10.80 RTS ReTurn from Subroutine Branch Instruction

Return from Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
RTS PR - PC 0000000000001011 2 —
Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processing
continues from the address indicated by the restored PC value. This instruction can be used to
return from a subroutine procedure called by a BSR or JSR instruction to the source of the call.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the
following instruction is a branch instruction, it is identified as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation

RTS() /* RTS */

{
unsigned int temp;
temp=PC;
PC=PR;
Delay_Slot(temp+2);
}

Rev. 1.0, 08/98, page 338 of 385
HITACHI

Example

MOV.L TABLE,R3 : R3 = TRGET address

JSR @R3 :Branch to TRGET.

NOP :NOP executed before branch.

ADD RO,R1 ; « Subroutine procedure return destination (PR
contents)
TABLE: .data.l TRGET ; Jump table
TRGET: MOV R1,R0O ; Entry to procedure

RTS ;PR contents- PC

MOV #12,R0O : MOV executed before branch.

Rev. 1.0, 08/98, page 339 of 385
HITACHI

10.81 SETS SET S bit System Control Instruction

S Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETS 1-S 0000000001011000 1 1
Description

This instruction sets the S bit to 1.
Operation

SETS() /* SETS ¥/

{
S=1;
PC+=2;
}

Example

SETS ;Before execution S=0
; After execution S=1

Rev. 1.0, 08/98, page 340 of 385
HITACHI

10.82 SETT SET T bit System Control Instruction

T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETT 1T 0000000000011000 1 1
Description

This instruction sets the T bit to 1.

Operation

SETT() /* SETT *

{
T=1,
PC+=2;
}

Example

SETT ; Before execution T=0
; After execution T=1

Rev. 1.0, 08/98, page 341 of 385
HITACHI

10.83 SHAD SHift Arithmetic Dynamically Shift Instruction
Dynamic Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAD Rm, Rn When Rm = 0, 0100nnnnmmmm1100 1 —
Rn <<Rm - Rn
When Rm <0,

Rn>>Rm - [MSB - Rn]

Description

This instruction arithmetically shifts the contents of general register Rn. General register Rm
specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register.
If the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The
left shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm <0 MSB LSB

MSB ———»

Rev. 1.0, 08/98, page 342 of 385
HITACHI

Operation

SHAD(int m,n) /*SHAD Rm,Rn */

{

int sgn=R[m] & 0x80000000;

if (sgn==0)

R[n] <<= (R[m] & Ox1F);
else if ((R[m] & Ox1F) ==0) {
if ((R[n] & 0x80000000) == 0)

R[n] = 0;

else

R[n] = OXFFFFFFFF;

}

else

R[n]=(long)R[n] >> ((~R[m] & Ox1F)+1);

PC+=2;
}

Example

SHAD R1,R2

SHAD R3,R4

:Before execution R1 = H'FFFFFFEC, R2 = H'80180000
: After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801
:Before execution R3 = H'00000014, R4 = H'FFFFF801
. After execution R3 =H'00000014, R4 = H'80100000

Rev. 1.0, 08/98, page 343 of 385
HITACHI

10.84 SHAL SHift Arithmetic Left Shift Instruction
One-Bit Left Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAL Rn T<Rn<0 0100nnnn00100000 1 MSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAL
o s

Operation

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{
if ((R[n]&0x80000000)==0) T=0;
else T=1,;
R[n]<<=1;
PC+=2;

}

Example
SHAL RO ; Before execution RO = H'80000001, T=0

; After execution RO =H'00000002, T=1

Rev. 1.0, 08/98, page 344 of 385
HITACHI

10.85 SHAR SHift Arithmetic Right Shift Instruction
One-Bit Right
Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR >
]

Operation

SHAR(long n) /* SHAR Rn */

{
long temp;
if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]>>=1;
if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example
SHAR RO ; Before execution RO = H'80000001, T=0

; After execution RO = H'C0000000, T=1

Rev. 1.0, 08/98, page 345 of 385
HITACHI

10.86 SHLD SHift Logical Dynamically Shift Instruction
Dynamic Logical Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHLD Rm, Rn When Rm = 0, 0100nnnnmmmm1101 1 —
Rn <<Rm - Rn
When Rm <0,

Rn>>Rm - [0 - Rn]

Description

This instruction logically shifts the contents of general register Rn. General register Rm specifies
the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, Os are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register.
If the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The
left shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm <0 MSB LSB

Rev. 1.0, 08/98, page 346 of 385
HITACHI

Operation

SHLD(int m,n)/*SHLD Rm,Rn */

{

int sgn = R[m] & 0x80000000;

if (sgn == 0)

R[n] <<= (R[m] & Ox1F);
else if ((R[m] & Ox1F) == 0)

R[n] = 0;

else

R[n]=(unsigned)R[n] >> ((~R[m] & 0x1F)+1);

PC+=2;
}

Example

SHLD R1,R2

SHLD R3,R4

Before execution R1 = H'FFFFFFEC, R2 = H'80180000
;. After execution R1 =HFFFFFFEC, R2 = H'00000801

Before execution R3 = H'00000014, R4 = H'FFFFF801
;. After execution R3 =H'00000014, R4 = H'80100000

Rev. 1.0, 08/98, page 347 of 385
HITACHI

10.87 SHLL SHift Logical Left Shift Instruction
One-Bit Left Logical Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHLL Rn T<Rn<0 0100nnnn00000000 1 MSB

Description

This instruction logically shifts the contents of general register Rn one bit to the left, and stores
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

[—] o

SHLL

Operation

SHLL(long n) /* SHLL Rn (Same as SHAL) */
{

if (R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;
}

Example

SHLL RO ; Before execution RO = H'80000001, T=0
; After execution RO =H'00000002, T=1

Rev. 1.0, 08/98, page 348 of 385
HITACHI

10.88 SHLLn n bits SHift Logical Left Shift Instruction
n-Bit Left Logical Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —

Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the left, and
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLL2 MSB LSB

SHLL8 MSB LSB

SHLL16 MSB LSB

Rev. 1.0, 08/98, page 349 of 385
HITACHI

Operation

SHLL2(long n) /* SHLL2 Rn */

{
R[n]<<=2;
PC+=2;

SHLL8(long n) /* SHLL8 Rn */

{
R[n]<<=8;
PC+=2;

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;
}

Example

SHLL2 RO

SHLL8 RO

SHLL16 RO

;. Before execution RO = H'12345678
: After execution RO = H'48D159E0
;. Before execution RO = H'12345678
. After execution RO = H'34567800
: Before execution RO = H'12345678
. After execution RO = H'56780000

Rev. 1.0, 08/98, page 350 of 385

HITACHI

10.89 SHLR SHift Logical Right Shift Instruction
One-Bit Right Logical Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHLR Rn O-Rn-T 0100nnnn00000001 1 LSB

Description

This instruction logically shifts the contents of general register Rn one bit to the right, and stores
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

o

SHLR

Operation

SHLR(long n) /* SHLR Rn */
{
if (R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
R[n]&=0x7FFFFFFF;
PC+=2;
}

Example

SHLR RO ;Before execution RO = H'80000001, T=0
; After execution RO = H'40000000, T=1

Rev. 1.0, 08/98, page 351 of 385
HITACHI

10.90 SHLRn n bits SHift Logical Right Shift Instruction
n-Bit Right Logical Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHLR2 Rn Rn>>2 —, Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —

Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the right,
and stores the result in Rn. The bits shifted out of the operand are discarded.

SHLR2 MSB LSB

SHLR8 MSB LSB

SHLR16 MSB LSB

Rev. 1.0, 08/98, page 352 of 385
HITACHI

Operation

SHLR2(long n) /* SHLR2 Rn */
{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;
}
SHLRS8(long n) /* SHLR8 Rn */
{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;
}

SHLR16(long n) /* SHLR16 Rn */

{
R[n]>>=16;
R[n]&=0x0000FFFF;
PC+=2;
}
Example
SHLR2 RO : Before execution RO = H'12345678
: After execution RO = H'048D159E
SHLR8 RO : Before execution RO = H'12345678
. After execution RO =H'00123456
SHLR16 RO : Before execution RO =H'12345678

. After execution RO =H'00001234

Rev. 1.0, 08/98, page 353 of 385
HITACHI

10.91 SLEEP SLEEP System Control Instruction

Transition to Power-Down Mode (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
SLEEP Sleep 0000000000011011 4 —
Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPU
exits the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

SLEEP performance depends on the standby control register (STBCR). See section 9, Power-
Down Modes, for details.

Operation

SLEEP() /* SLEEP */

{
Sleep_standby();

}
Example

SLEEP ; Transition to power-down mode

Rev. 1.0, 08/98, page 354 of 385
HITACHI

1092 STC STore Control register System Control Instruction

Store from Control Register (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
STC SR, Rn SR - Rn 0000nnNNN00000010 2 —
STC GBR, Rn GBR - Rn 0000nnNnNn00010010 2 —
STC VBR, Rn VBR - Rn 0000nnNnNn00100010 2 e
STC SSR, Rn SSR - Rn 0000nnNnNn00110010 2 —
STC SPC, Rn SPC - Rn 0000nnNnNn01000010 2 —
STC SGR, Rn SGR - Rn 0000nnnNn00111010 3 —
STC DBR, Rn DBR - Rn 0000nnNnNn11111010 2 —
STC RO_BANK, Rn RO_BANK - Rn 0000nnNnNN10000010 2 —
STC R1_BANK, Rn R1_BANK - Rn 0000nnNnNn10010010 2 e
STC R2_BANK, Rn R2_BANK - Rn 0000nnNnNn10100010 2 —
STC R3_BANK, Rn R3_BANK - Rn 0000nnNnNn10110010 2 —
STC R4_BANK, Rn R4_BANK - Rn 0000nNnNN11000010 2 —
STC R5_BANK, Rn R5_BANK - Rn 0000nnNnNn11010010 2 —
STC R6_BANK, Rn R6_BANK - Rn 0000nNnNN11100010 2 —
STC R7_BANK, Rn R7_BANK - Rn 0000nNNN11110010 2 —
STC.L SR, @-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC.L GBR, @-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnn00010011 2 —
STC.L VBR, @-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnn00100011 2 —
STC.L SSR, @-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 2 —
STC.L SPC, @-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnn01000011 2 —
STC.L SGR, @-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnn00110010 3 —
STC.L DBR, @-Rn Rn-4 . Rn, DBR - (Rn) 0100nnnn11110010 2 —
STC.L RO_BANK, @-Rn Rn-4 - Rn, RO_BANK - (Rn) 0100nnnn10000011 2 —
STC.L R1_BANK, @-Rn Rn-4 - Rn, R1_BANK - (Rn) 0100nnnn10010011 2 —
STC.L R2_BANK, @-Rn Rn-4 - Rn, R2_BANK - (Rn) 0100nnnn10100011 2 —
STC.L R3_BANK, @-Rn Rn-4 - Rn, R3_BANK - (Rn) 0100nnnn10110011 2 —
STC.L R4_BANK, @-Rn Rn-4 - Rn, R4_BANK - (Rn) 0100nnnn11000011 2 —
STC.L R5_BANK, @-Rn Rn-4 - Rn, R5_BANK - (Rn) 0100nnnn11010011 2 —
STC.L R6_BANK, @-Rn Rn-4 - Rn, R6_BANK - (Rn) 0100nnnn11100011 2 —
STC.L R7_BANK, @-Rn Rn-4 - Rn, R7_BANK - (Rn) 0100nnnn11110011 2 —

Rev. 1.0, 08/98, page 355 of 385
HITACHI

Description

This instruction stores control register SR, GBR, VBR, SSR, SPC, SGR, DBR or Rm_BANK (m
= 0-7) in the destination.

Rm_BANK operands are specified by the RB bit of the SR register:
when the RB bit is 1 Rm_BANKO is accessed,
when the RB bit is 0 Rm_BANK1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR, @-Rn.
Use of these instructions in user mode will cause illegal instruction exceptions.

Operation

STCSR(intn) /* STC SR,Rn : Privileged */
{
R[n]=SR;
PC+=2;

STCGBR(intn) /*STC GBR,Rn*/
{
R[n]=SGR;
PC+=2;

STCVBR(intn) /* STC VBR,Rn : Privileged */
{
R[n]=VBR;
PC+=2;

STCSSR(intn) /* STC SSR,Rn : Privileged */
{
R[n]=SSR;
PC+=2;

Rev. 1.0, 08/98, page 356 of 385
HITACHI

STCSPC(intn) /* STC SPC,Rn : Privileged */
{
R[n]=SPC;
PC+=2;

STCSGR(intn) /*STC SGR,Rn : Privileged */
{
R[N]=SGR;
PC+=2;

STCDBR(intn) /* STC DBR,Rn : Privileged */
{
R[n]=DBR;
PC+=2;

STCRm_BANK(intn) /* STC Rm_BANK,Rn : Privileged */
/* m=0-7*/

R[n]=Rm_BANK;
PC+=2;

STCMSR(intn) /* STC.L SR,@-Rn : Privileged */
{
R[n}-=4
Write_Long(R[n],SR);
PC+=2;

STCMGBR(intn) /*STC.L GBR,@-Rn */
{
R[n]—=4
Write_Long(R[n],GBR);
PC+=2;

Rev. 1.0, 08/98, page 357 of 385
HITACHI

STCMVBR(intn) /* STC.L VBR,@-Rn : Privileged */
{
R[n]-=4;
Write_Long(R[n],VBR);
PC+=2;

STCMSSR(intn) /* STC.L SSR,@-Rn : Privileged */
{
R[n}—=4;
Write_Long(R[n],SSR);
PC+=2;

STCMSPC(intn) /* STC.L SPC,@-Rn : Privileged */
{
Rn]-=4;
Write_Long(R[n],SPC);
PC+=2;

STCMSGR(intn) /* STC.L SGR,@-Rn : Privileged */
{
R[n]-=4;
Write_Long(R[n],SGR);
PC+=2;

STCMDBR(intn) /* STC.L DBR,@-Rn : Privileged */
{
R[n]-=4;
Write_Long(R[n],DBR);
PC+=2;

Rev. 1.0, 08/98, page 358 of 385
HITACHI

STCMRm_BANK(intn) /* STC.L Rm_BANK,@-Rn
/* m=0-7 */

R[n]-=4;
Write_Long(R[n],Rm_BANK);
PC+=2;

}

Possible Exceptions:

General illegal instruction exception
Slot illegal instruction exception

Data TLB miss exception

Data TLB protection violation exception
Address error

HITACHI

: Privileged */

Rev. 1.0, 08/98, page 359 of 385

10.93 STS
Store from

STore System register

System Register

System Control Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
STS MACH,Rn MACH - Rn 0000nnnn00001010 1 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 1 —
STS PR,Rn PR - Rn 0000nnnn00101010 1 —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 1 —

Description

This instruction stores system register MACH, MACL, or PR in the destination.

Operation

STSMACH(int n)
{
R[n]=MACH;
PC+=2;

STSMACL(int n)

{
R[n]=MACL;
PC+=2;

STSPR(int n)

{
R[n]=PR;
PC+=2;

STSMMACH(int n)
{

/* STS MACH,Rn */

/* STS MACL,Rn */

[* STS PR,Rn */

[* STS.L MACH,@-Rn */

Rev. 1.0, 08/98, page 360 of 385

HITACHI

R[n]—=4;
Write_Long(R[n],MACH);
PC+=2;

STSMMACL(intn) /*STS.L MACL,@-Rn */
{

R[n]—=4;

Write_Long(R[n],MACL);

PC+=2;

STSMPR(intn) /* STS.L PR,@-Rn */
{

R[n}-=4;

Write_Long(R[n],PR);

PC+=2;
}

Possible Exceptions:
e Data TLB miss exception

« Data TLB protection violation exception
* Address error

Example
STS MACH,R0 ;. Before execution RO = H'FFFFFFFF, MACH = H'00000000
; After execution RO = H'00000000
STS.L PR,@-R15 . Before execution R15 = H'10000004

; After execution R15=H'10000000, (R15) = PR

Rev. 1.0, 08/98, page 361 of 385
HITACHI

10.94 STS STore from FPU System register System Control

Instruction
Store from FPU System Register
Execution
Format Summary of Operation Instruction Code States T Bit
STS FPUL,Rn FPUL - Rn 0000nnnNn01011010 1 —

STS FPSCR,Rn FPSCR - Rn 0000nnnNn01101010 1
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn) 0100nnnn01010010 1 —
STS.L FPSCR,@-Rn Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 1

Description
This instruction stores FPU system register FPUL or FPSCR in the destination.
Operation

STS(int n, int *FPUL) /* STS FPUL,Rn */
{
R[n]= *FPUL;
PC+=2;
}
STS_SAVE(int n, int *FPUL) /* STS.L FPUL,@-Rn */
{
R[n]-=4;
Write_Long(R[n],*FPUL) ;
PC+=2;
}
STS(int n) /* STS FPSCR,Rn */
{
R[N]=FPSCR&O0x003FFFFF;
PC+=2;
}
STS_RESTORE(int n) /* STS.L FPSCR,@-Rn */
{
R[n]-=4,
Write_Long(R[n],FPSCR&0X003FFFFF)

Rev. 1.0, 08/98, page 362 of 385
HITACHI

PC+=2;
}

Possible Exceptions:
e Data TLB miss exception

« Data TLB protection violation exception
* Address error

Examples

e STS
Example 1:
MOV.L #H'12ABCDEF, R12
LDS R12, FPUL
STS FPUL, R13
; After executing the STS instruction:
; R13 = 12ABCDEF

Example 2:
STS FPSCR, R2
; After executing the STS instruction:
; The current content of FPSCR is stored in register R2

e STS.L

Example 1:

MOV.L #H'0C700148, R7

STS.L FPUL, @-R7
; Before executing the STS.L instruction:
; R7 =0C700148
; After executing the STS.L instruction:
; R7 = 0C700144, and the content of FPUL is saved at memory
; locatio\n 0C700144.

Example 2:
MOV.L #H'0C700154, R8
STS.L FPSCR, @-R8
; After executing the STS.L instruction:
; The content of FPSCR is saved at memory location 0C700150.

Rev. 1.0, 08/98, page 363 of 385
HITACHI

10.95 SUB SUBtract binary Arithmetic Instruction
Binary Subtraction

Execution
Format Summary of Operation Instruction Code States T Bit
SUB Rm,Rn Rn-Rm - Rn 0011nnnnmmmm21000 1 —

Description

This instruction subtracts the contents of general register Rm from the contents of general
register Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn should be
used.

Operation

SUB(long m, long n) /* SUB Rm,Rn */
{

R[n]-=R[m];

PC+=2;
}

Example

SuB RO,R1 ; Before execution RO = H'00000001, R1 = H'80000000
; After execution R1 = H'7FFFFFFF

Rev. 1.0, 08/98, page 364 of 385
HITACHI

10.96 SUBC SUBtract with Carry Arithmetic Instruction
Binary Subtraction with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
SUBC Rm,Rn Rn-Rm-T = Rn, borrow -~ T 0011nnnnmmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents of
general register Rn, and stores the result in Rn. A borrow resulting from the operation is
reflected in the T bit. This instruction is used for subtractions exceeding 32 bits.

Operation

SUBC(long m, long n) /* SUBC Rm,Rn */

{
unsigned long tmp0,tmp1;

tmpl=R[n]-R[m];
tmpO=R[n];
R[n]=tmp1-T;
if (tmpO<tmpl) T=1;
else T=0;
if (tmp1<R[n]) T=1,;
PC+=2;

}

Example

CLRT ;RO:R1(64 bits) — R2:R3(64 bits) = RO:R1(64 bits)

SUBC R3,R1 ;Before execution T =0, R1 =H'00000000, R3 = H'00000001
; After execution T =1, R1 = HFFFFFFFF

SUBC R2,RO ;Before execution T =1, RO = H'00000000, R2 = H'00000000
; After execution T =1, RO = HFFFFFFFF

Rev. 1.0, 08/98, page 365 of 385
HITACHI

10.97 SUBV SUBtract with (V flag) underflow check
Arithmetic Instruction
Binary Subtraction with Underflow Check

Execution
Format Summary of Operation Instruction Code States T Bit
SUBV Rm,Rn Rn-Rm = Rn, underflow -~ T 0011nnnnmmmm1011 1 Underflow

Description

This instruction subtracts the contents of general register Rm from the contents of general
register Rn, and stores the result in Rn. If underflow occurs, the T bit is set.

Operation

SUBV(long m, long n) /* SUBV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n]-=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==1) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;

Rev. 1.0, 08/98, page 366 of 385
HITACHI

Example

: Before execution RO = H'00000002, R1 = H'80000001

. After execution R1=H7FFFFFFF, T=1

: Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution R3 =H'80000000, T=1

SUBV RO,R1

SUBV R2,R3

Rev. 1.0, 08/98, page 367 of 385
HITACHI

10.98 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half Swap

Execution
Format Summary of Operation Instruction Code States T Bit
SWAP.B Rm,Rn Rm - lower-2-byte upper-/ 0110nnnnmmmm21000 1 —
lower-byte swap —» Rn
SWAP.W Rm,Rn Rm - upper-/lower-word 0110nnnnmmmm21001 1
swap - Rn

Description

This instruction swaps the upper and lower parts of the contents of general register Rm, and
stores the result in Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8
bits from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of
Rn.

In the case of a word specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with the
16 bits from bit 15 to bit O.

Operation

SWAPB(long m, longn) /* SWAP.B Rm,Rn */
{

unsigned long temp0,temp1;

temp0=R[m]&0xFFFF0000;
temp1=(R[m]&0x000000FF)<<8;
R[n]=(R[m]&0x0000FF00)>>8;
R[n]=R[n]|temp1|tempO;

PC+=2;

SWAPW(long m, long n) /* SWAP.W Rm,Rn */
{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;
R[n]=R[m]<<16;
Rev. 1.0, 08/98, page 368 of 385
HITACHI

R[n]|=temp;
PC+=2;
}

Example

SWAP.B RO,R1

SWAP.W RO,R1

: Before execution RO =H'12345678

. After execution R1 =H'12347856
:Before execution RO =H'12345678

. After execution R1 =H'56781234

HITACHI

Rev. 1.0, 08/98, page 369 of 385

10.99 TAS Test And Set Logical Instruction
Memory Test and Bit Setting

Execution
Format Summary of Operation Instruction Code States T Bit
TAS.B @Rn If(Rn)=0,1 - T,else0 - T 0100nnnn00011011 5 Test
1 - MSB of (Rn) result

Description

This instruction purges the cache block corresponding to the memory area specified by the
contents of general register Rn, reads the byte data indicated by that address, and sets the T bit to
1 if that data is zero, or clears the T bit to O if the data is nonzero. The instruction then sets bit 7

to 1 and writes to the same address. The bus is not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the
contents of that cache block are written back to external memory, and the cache block is then
invalidated (by clearing the V bit to 0). If there is a cache hit and the corresponding cache block
is clean (U bit = 0), the cache block is simply invalidated (by clearing the V bit to 0). A purge is
not executed in the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is not
executed between the two TAS.B accesses.

Operation

TAS(int n) /* TAS.B @Rn */
{

int temp;

temp=(int)Read_Byte(R[n]); /* Bus Lock */
if (temp==0) T=1;

else T=0;

temp|=0x00000080;
Write_Byte(R[n],temp); /* Bus unlock */
PC+=2;

Rev. 1.0, 08/98, page 370 of 385
HITACHI

Possible Exceptions:
» Data TLB miss exception

» Data TLB protection violation exception
 Initial page write exception
* Address error

Exceptions are checked taking a data access by this instruction as a byte store.

Rev. 1.0, 08/98, page 371 of 385
HITACHI

10.100 TRAPA TRAP Always System Control Instruction
Trap Exception Handling

Execution
Format Summary of Operation Instruction Code States T Bit
TRAPA #imm imm - TRA, PC+2 - SPC, 11000011iiiiiiii 7 —

SR - SSR, 1 - SR.MD/
BL/RB, 0x160 - EXPEVT,
VBR+H'00000100 - PC

Description

This instruction starts trap exception handling. The values of (PC + 2) and SR are saved to SPC
and SSR, and 8-bit immediate data is stored in the TRA register (bits 9 to 2). The processor
mode is switched to privileged mode (the MD bit in SR is set to 1), and the BL bit and RB bit in
SR are set to 1. As a result, exception and interrupt requests are masked (not accepted), and the
BANK1 registers (RO_BANK1 to R7_BANK1) are selected. Exception code 0x160 is written to
the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100),
indicated by the sum of the VBR register contents and offset H'00000100.

Operation

TRAPA(int i) /* TRAPA #mm */
{

int imm;

imm=(0x000000FF & i);
TRA=ImMmM<<2;
SSR=SR;

SPC=PC+2;

SR.MD=1;

SR.BL=1;

SR.RB=1;
EXPEVT=0x00000160;
PC=VBR+H'00000100;

Rev. 1.0, 08/98, page 372 of 385
HITACHI

10.101 TST TeST logical Logical Instruction
AND Operation T Bit Setting

Execution
Format Summary of Operation Instruction Code States T Bit
TST Rm,Rn Rn & Rm; if result is 0, 0010nnnnmmmm21000 1 Test
1-.T,else0 - T result
TST #imm,RO RO & imm:; if result is 0, 11001000iiiiiiii 1 Test
1-.T,else0 - T result
TST.B #imm,@(R0O,GBR) (RO + GBR) & imm; 11001100iiiiiiii 3 Test
ifresultis0,1 - T, result

else0 - T

Description

This instruction ANDs the contents of general registers Rn and Rm, and sets the T bit if the
result is zero. If the result is nonzero, the T bit is cleared. The contents of Rn are not changed.

This instruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data. The contents of RO or the memory are not changed.

Operation

TST(long m, long n) /* TST Rm,Rn */
{

if (R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

TSTI(long i) /* TST #imm,R0 */
{

long temp;

temp=R[0]&(0x000000FF & (long)i);
if (temp==0) T=1;

else T=0;

PC+=2;

Rev. 1.0, 08/98, page 373 of 385
HITACHI

TSTM(long i) /* TST.B #imm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R][0]);
temp&=(0x000000FF & (long)i);
if (temp==0) T=1;

else T=0;
PC+=2;
}
Example
TST RO,RO : Before execution RO = H'00000000
: After execution T=1
TST #H'80,R0 . Before execution RO = H'FFFFFF7F

: After execution T=1
TST.B #H'A5@(R0O,GBR) ; Before execution @(R0,GBR) = H'A5
: After execution T=0

Rev. 1.0, 08/98, page 374 of 385
HITACHI

10.102 XOR eXclusive OR logical Logical Instruction
Exclusive Logical OR

Execution
Format Summary of Operation Instruction Code States T Bit
XOR Rm,Rn Rn”*Rm - Rn 0010nnnnmmmm1010 1 —
XOR #imm,R0 RO~ imm - RO 1100101 Qiiiiiii 1 —
XOR.B #imm,@(R0,GBR) (RO+GBR)Nmm - 110011 10iiiiiiii 4 —

(RO+GBR)

Description

This instruction exclusively ORs the contents of general registers Rn and Rm, and stores the
result in Rn.

This instruction can be used to exclusively OR register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memory
with 8-bit immediate data.

Operation

XOR(long m, long n) /* XOR Rm,Rn */
{

R[n]*=R[m];

PC+=2;

XORI(long i) /* XOR #imm,R0 */
{
R[0]"=(0x000000FF & (long)i);
PC+=2;

XORM(long i) /* XOR.B #imm,@(R0,GBR) */
{

int temp;

temp=(long)Read_Byte(GBR+R][0]);
temp”=(0x000000FF &(long)i);
Write_Byte(GBR+R[0],temp);

Rev. 1.0, 08/98, page 375 of 385
HITACHI

PC+=2;
}

Example
: Before execution RO = HAAAAAAAA, R1 = H'55555555
. After execution R1 = H'FFFFFFFF

XOR #H'FO,RO . Before execution RO = H'FFFFFFFF
;. After execution RO = H'FFFFFFOF

XOR RO,R1

XOR.B #H'A5,@(R0,GBR) ; Before execution @(R0,GBR) = H'A5
; After execution @(R0,GBR) = H'00

Rev. 1.0, 08/98, page 376 of 385
HITACHI

10.103 XTRCT eXTRact Data Transfer Instruction
Middle Extraction
from Linked Registers

Execution
Format Summary of Operation Instruction Code States T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn = Rn 0010nnnnmmmm1101 1 —

Description

This instruction extracts the middle 32 bits from the 64-bit contents of linked general registers
Rm and Rn, and stores the result in Rn.

MSB LSB MSB LSB
Rm Rn

S

Rn

Operation

XTRCT(long m, longn) /* XTRCT Rm,Rn */
{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;
R[n]=(R[n]>>16)&0x0000FFFF;
R[n]|=temp;
PC+=2;

}

Example

XTRCT RO,R1 : Before execution RO =H'01234567, R1 = H'89ABCDEF
. After execution R1 =H'456789AB

Rev. 1.0, 08/98, page 377 of 385
HITACHI

Rev. 1.0, 08/98, page 378 of 385
HITACHI

Appendix A Address List

Table A.1 Address List

Module Register R4 Address Afea7 Size [Power-On Manual Sleep [Standby $ynchro-
IAddress* * Reset Reset nization
Clock

CCN PTEH H'FFO0 0000 [H'1F00 0000 (32 [Undefined Undefined Held [Held Iclk
CCN PTEL H'FFO0 0004 [H'1F00 0004 (32 [Undefined Undefined Held |Held Iclk
CCN TTB H'FFO0 0008 [H'1F00 0008 (32 [Undefined Undefined Held [Held Iclk
CCN [TEA H'FFO0 000C |H'1F00 000C [32 |Undefined Held Held [Held Iclk
CCN MMUCR |H'FF00 0010 |H'1FO0 0010 [32 |H'0000 0000 [H'0000 0000 [Held [Held Iclk
CCN BASRA H'FFO0 0014 [H'1F00 0014 |8 Undefined Held Held |Held Iclk
CCN BASRB H'FFO0 0018 [H'1F00 0018 (8 Undefined Held Held |Held Iclk
CCN |CCR H'FFO0 001C |H'1F00 001C [32 |H'0000 0000 |H'0000 0000 [Held |Held Iclk
CCN TRA H'FFO0 0020 |H'1F00 0020 [32 [Undefined Undefined Held [Held Iclk
CCN EXPEVT |H'FF00 0024 |H'1F00 0024 [32 |H'0000 0000 [H'0000 0020 [Held [Held Iclk
CCN INTEVT H'FFO0 0028 [H'1F00 0028 (32 [Undefined Undefined Held [Held Iclk
CCN PTEA H'FFO0 0034 [H'1F00 0034 (32 [Undefined Undefined Held |Held Iclk
CCN |QACRO |H'FF00 0038 [H'1F00 0038 [32 |Undefined Undefined [Held |Held Iclk
CCN QACR1 H'FFO0 003C [H'1F00 003C [32 |Undefined Undefined Held [Held Iclk
uBC BARA H'FF20 0000 [H'1F20 0000 (32 [Undefined Held Held [Held Iclk
UBC BAMRA H'FF20 0004 [H'1F20 0004 |8 Undefined Held Held [Held Iclk
uBC BBRA H'FF20 0008 |H'1F20 0008 (16 [H'0000 Held Held |Held Iclk
uBC BARB H'FF20 000C [H'1F20 000C (32 [Undefined Held Held [Held Iclk
UBC BAMRB H'FF20 0010 [H'1F20 0010 (8 Undefined Held Held [Held Iclk
UBC BBRB H'FF20 0014 [H'1F20 0014 |16 H'0000 Held Held [Held Iclk
UBC BDRB H'FF20 0018 [H'1F20 0018 |32 Undefined Held Held |Held Iclk
UBC BDMRB H'FF20 001C [H'1F20 001C (32 Undefined Held Held [Held Iclk
uBC BRCR H'FF20 0020 |[H'1F20 0020 (16 |H'0000* Held Held |Held Iclk
BSC BCR1 H'FF80 0000 |H'1F80 0000 [32 [H'0000 0000* |Held Held |Held Bclk
BSC BCR2 H'FF80 0004 [H'1F80 0004 (16 [H'3FFC* Held Held [Held Bclk
BSC CR1 H'FF80 0008 [H'1F80 0008 (32 |H'7777 7777 [Held Held |Held Bclk
BSC CR2 H'FF80 000C [H'1F80 000C (32 |H'FFFE EFFF [Held Held |Held Bclk
BSC CR3 H'FF80 0010 [H'1F80 0010 (32 |H'0777 7777 [Held Held |Held Bclk

Rev. 1.0, 08/98, page 379 of 385

HITACHI

Table A.1 Address List (cont)

Module Register R4 Address Afea7 Size [Power-On Manual Sleep [Standby $ynchro-
IAddress* * Reset Reset nization
Clock
BSC MCR H'FF80 0014 |H'1F80 0014 [32 |H'0000 0000 [Held Held |Held Bclk
BSC PCR H'FF80 0018 |H'1F80 0018 |16 |H'0000 Held Held [Held Bclk
BSC RTCSR |H'FF80 001C [H'1F80 001C (16 [H'0000 Held Held |Held Bclk
BSC RTCNT H'FF80 0020 |[H'1F80 0020 (16 [H'0000 Held Held [Held Bclk
BSC RTCOR H'FF80 0024 [H'1F80 0024 (16 [H'0000 Held Held |Held Bclk
BSC RFCR H'FF80 0028 |[H'1F80 0028 (16 [H'0000 Held Held |Held Bclk
BSC PCTRA |H'FF80002C |H'1F80002C [32 |H'0000 0000 [Held Held |Held Bclk
BSC PDTRA H'FF80 0030 [H'1F80 0030 |16 |Undefined Held Held |Held Bclk
BSC PCTRB H'FF80 0040 |H'1F80 0040 32 |H'0000 0000 [Held Held |Held Bclk
BSC PDTRB H'FF80 0044 [H'1F80 0044 |16 Undefined Held Held [Held Bclk
BSC GPIOIC H'FF80 0048 [H'1F800048 (16 [H'0000 0000 ([Held Held |Held Bclk
BSC [SDMR2 |H'FF90 xxxx [H'1F90 xxxx (8 \Write-only Bclk
BSC SDMR3 H'FF94 xxxx [H'1F94 xxxx (8 Bclk
DMAC [SARO H'FFAO 0000 [H'1LFAO 0000 (32 [Undefined Undefined |Held |Held Bclk
DMAC |DARO H'FFAO 0004 [H'1FAO0 0004 [32 |Undefined Undefined [Held [Held Bclk
DMAC |DMATCRO [H'FFAO 0008 [H'1FA0 0008 [32 [Undefined Undefined Held |Held Bclk
DMAC |CHCRO |H'FFAO 000C |[H'1FAO0 000C [32 [H'0000 0000 [H'0000 0000 [Held |Held Bclk
DMAC |[SAR1 H'FFAO 0010 [H'1FAO0 0010 (32 [Undefined Undefined [Held [Held Bclk
DMAC |DAR1 H'FFAO 0014 |H'1FAO0 0014 (32 Undefined Undefined Held [Held Bclk
DMAC |DMATCR1 H'FFAO0 0018 H'1FA0 0018 32 Undefined Undefined Held [Held Bclk
DMAC |CHCR1 |H'FFAO001C |H'1FAO0 001C [32 [|H'0000 0000 [H'0000 0000 [Held |Held Bclk
DMAC |[SAR2 H'FFAO 0020 [H'1FA0 0020 (32 [Undefined Undefined [Held [Held Bclk
DMAC |DAR2 H'FFAO 0024 [H'1FA0 0024 [32 |Undefined Undefined [Held ([Held Bclk
DMAC |DMATCR2 [H'FFAO 0028 [H'1FA0 0028 [32 [Undefined Undefined Held |Held Bclk
DMAC |CHCR2 |H'FFAO002C |H'1FAO0 002C [32 |H'0000 0000 [H'0000 0000 [Held |Held Bclk
DMAC |[SAR3 H'FFAO0 0030 [H'1LFAO0 0030 (32 [Undefined Undefined |Held |Held Bclk
DMAC |DAR3 H'FFAO 0034 [H'1FA0 0034 [32 |Undefined Undefined [Held ([Held Bclk
DMAC |DMATCRS3 [H'FFAO 0038 [H'1FA0 0038 [32 [Undefined Undefined Held |Held Bclk
DMAC |CHCR3 |H'FFAO 003C |[H'1FAO0 003C [32 |H'0000 0000 [H'0000 0000 [Held |Held Bclk
DMAC |DMAOR |H'FFAO 0040 H'1FA0 0040 [B2 |H'0000 0000 [H'0000 0000 [Held [Held Bclk

Rev. 1.0, 08/98, page 380 of 385

HITACHI

Table A.1 Address List (cont)

Module Register R4 Address Afea7 Size [Power-On Manual Sleep [Standby $ynchro-
IAddress* * Reset Reset nization
Clock
CPG [FRQCR |H'FFCO0 0000 [H'1FCO0 0000 [16 [Held Held [Held Pclk
CPG [STBCR |H'FFCO0 0004 [H'1FCO 0004 (8 H'00 Held Held [Held Pclk
CPG TCNT |H'FFCO 0008 [H'1FCO 0008 [8/16*°H'00 Held Held [Held Pclk
CPG TCSR |H'FFCO 000C [H'1FCO 000C [8/16*°H'00 Held Held [Held Pclk
CPG [STBCR2 |H'FFCO0 0010 [H'1FCO 0010 (8 H'00 Held Held [Held Pclk
RTC |R64CNT [H'FFC8 0000 |H'1FC8 0000 (8 Held Held Held |Held Pclk
RTC |RSECCNT H'FFC8 0004 [H'1FC80004 {8 [Held Held Held [Held Pclk
RTC |RMINCNT [H'FFC8 0008 |H'1FC80008 [8 [Held Held Held [Held Pclk
RTC |RHRCNT [H'FFC8000C [H'1FC8000C {8 [Held Held Held |Held Pclk
RTC |RWKCNT [H'FFC8 0010 |H'1FC8 0010 (8 Held Held Held |Held Pclk
RTC |RDAYCNT H'FFC8 0014 |H'1FC80014 {8 [Held Held Held [Held Pclk
RTC |RMONCNTH'FFC8 0018 |H'1FC8 0018 (8 Held Held Held [Held Pclk
RTC |RYRCNT [H'FFC8001C |H'1FC8001C [16 [Held Held Held |Held Pclk
RTC |RSECAR [H'FFC80020 |H'1FC80020 [8 [Held* Held Held [Held Pclk
RTC |RMINAR [H'FFC80024 |H'1FC8 0024 [8 Held* Held Held [Held Pclk
RTC |RHRAR [H'FFC80028 |H'1FC80028 [8 Held** Held Held [Held Pclk
RTC |RWKAR [H'FFC8002C [H'1FC8 002C [8 Held* Held Held [Held Pclk
RTC |RDAYAR [H'FFC80030 |H'1FC80030 [8 [Held* Held Held [Held Pclk
RTC |RMONAR [H'FFC8 0034 |H'1FC80034 [8 Held* Held Held [Held Pclk
RTC |RCR1 H'FFC8 0038 [H'1FC8 0038 8 H'00** H'00%* Held |Held Pclk
RTC |RCR2 H'FFC8 003C [H'1FC8 003C |8 H'09** H'00%* Held |Held Pclk
INTC [ICR H'FFDO 0000 [H'1FDO 0000 [16 [H'0000* H'0000* Held |Held Pclk
INTC |IPRA H'FFDO 0004 |H'1FDO 0004 [16 [H'0000 H'0000 Held |Held Pclk
INTC |PRB H'FFDO 0008 |H'1FDO 0008 [16 [H'0000 H'0000 Held |Held Pclk
INTC |IPRC H'FFDO 000C |H'1FDO 000C [16 [H'0000 H'0000 Held |Held Pclk
TMU [TOCR H'FFD8 0000 |H'1FD8 0000 (8 H'00 H'00 Held [Held Pclk
TMU [TSTR H'FFD8 0004 |H'1FD8 0004 (8 H'00 H'00 Held [H'00% |Pclk
TMU [TCORO |H'FFD80008 [H'1FD8 0008 [32 |H'FFFF FFFF [H'FFFF FFFF|Held [Held Pclk
TMU [TCNTO |H'FFD8 000C [H'1FD8 000C [32 |H'FFFF FFFF [H'FFFF FFFF|[Held [Held Pclk
TMU [TCRO H'FFD8 0010 |H'1FD8 0010 [16 [H'0000 H'0000 Held [Held Pclk

Rev. 1.0, 08/98, page 381 of 385

HITACHI

Table A.1 Address List (cont)

Module Register R4 Address Afea7 Size [Power-On Manual Sleep [Standby $ynchro-
IAddress* * Reset Reset nization
Clock

TMU TCORL1 H'FFD8 0014 [H'1FD8 0014 |32 H'FFFF FFFF [H'FFFF FFFF[Held [Held Pclk
TMU TCNT1 H'FFD8 0018 [H'1FD8 0018 |32 H'FFFF FFFF [H'FFFF FFFF[Held [Held Pclk
TMU TCR1 H'FFD8 001C [H'1FD8 001C (16 H'0000 H'0000 Held [Held Pclk
TMU TCOR2 H'FFD8 0020 [H'1FD8 0020 (32 H'FFFF FFFF [H'FFFF FFFF[Held [Held Pclk
TMU TCNT2 H'FFD8 0024 [H'1FD8 0024 |32 H'FFFF FFFF [H'FFFF FFFF[Held [Held Pclk
TMU ITCR2 H'FFD8 0028 |H'1FD8 0028 [16 [H'0000 H'0000 Held [Held Pclk
TMU TCPR2 H'FFD8 002C [H'1FD8 002C (32 Held Held Held [Held Pclk
SCI SCSMR1 [H'FFEO 0000 [H'1FEO 0000 (8 H'00 H'00 Held [H'00 Pclk
SCI SCBRR1 [H'FFEO 0004 [H'1FEO 0004 |8 H'FF H'FF Held |H'FF Pclk
SCI SCSCR1 [H'FFEO 0008 [H'1FEO 0008 (8 H'00 H'00 Held |H'00 Pclk
SCI SCTDR1 |H'FFEO 000C [H'1FEO 000C |8 H'FF H'FF Held |H'FF Pclk
SCI SCSSR1 |H'FFEO 0010 |H'1FEO 0010 |8 H'84 H'84 Held [H'84 Pclk
SCI SCRDR1 [H'FFEO 0014 [H'1FEO 0014 I8 H'00 H'00 Held [|H'00 Pclk
SCI SCSCMR1 [H'FFEO 0018 [H'1FEO 0018 (8 H'00 H'00 Held |H'00 Pclk
Scl ISCSPTR1 |H'FFEO 001C [H'1IFEO 001C [8 |H'00* H'00% Held [H00* [Pclk
SCIF |[SCSMR2 |H'FFE8 0000 [H'1FE8 0000 (16 [H'0000 H'0000 Held |Held Pclk
SCIF SCBRR2 |H'FFE8 0004 [H'1FE8 0004 |8 H'FF H'FF Held [Held Pclk
SCIF [SCSCR2 |H'FFE8 0008 [H'1FE8 0008 [16 |H'0000 H'0000 Held [Held Pclk
SCIF [SCFTDR2 |H'FFE8 000C |H'1FE8 000C (8 Undefined Undefined [Held [Held Pclk
SCIF SCFSR2 |H'FFE8 0010 |H'1FE8 0010 [16 |H'0060 H'0060 Held |Held Pclk
SCIF |[SCFRDR2 H'FFE8 0014 H'1FE8 0014 8 Undefined Undefined Held [Held Pclk
SCIF SCFCR2 H'FFE8 0018 |H'1FE8 0018 [16 |H'0000 H'0000 Held [Held Pclk
SCIF SCFDR2 |[H'FFE8 001C |H'1FE8 001C [16 |H'0000 H'0000 Held [Held Pclk
SCIF [SCSPTR2 |H'FFE8 0020 [H'1FE8 0020 |16 |H'0000* H'0000** Held [Held Pclk
SCIF SCLSR2 |[H'FFE8 0024 |H'1FE8 0024 [16 |H'0000 H'0000 Held [Held Pclk
Hitachi- |SDIR H'FFFO 0000 [H'1FFO 0000 (16 H'FFFF* Held Held [Held Pclk
uDI

Hitachi- |SDDR H'FFFO 0008 [H'1FFO 0008 |32 Held Held Held [Held Pclk
UDI

Note on next page

Rev. 1.0, 08/98, page 382 of 385

HITACHI

Notes: 1. With control registers, the above addresses in the physical page number field
can be accessed by means of a TLB setting. When these addresses are referenced directly
without using the TLB, operations are limited.

2. Includes undefined bits. See the descriptions of the individual modules.

3. Use word-size access when writing. Perform the write with the upper byte set to H'5A
or H'A5, respectively. Byte- and longword-size writes cannot be used.

Use byte-size access when reading.

Rev. 1.0, 08/98, page 383 of 385
HITACHI

Rev. 1.0, 08/98, page 384 of 385
HITACHI

Appendix B Instruction Prefetch Side Effects

The SH4 is provided with an internal buffer for holding pre-read instructions, and always
performs pre-reading. Therefore, program code must not be located in the last 20-byte area of
any memory space. If program code is located in these areas, the memory area will be exceeded
and a bus access for instruction pre-reading may be initiated. A case in which this is a problem is
shown below.

Address :
H'03FFFFF8 ADD R1,R4 «—— PC (program counter)
H'03FFFFFA JMP @R2
Area 0 H'O3FFFFFC NOP
H'03FFFFFE NOP
Area 1 H'04000000
H'04000002 -« Instruction prefetch address

Figure B.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter
(PC) and the address H'0400002 instruction prefetch are executed simultaneously. It is also
assumed that the program branches to an area outside area 1 after executing the following JMP
instruction and delay slot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction prefetch) to area 1
may be initiated.

Instruction Prefetch Side Effects
1. Itis possible that an external bus access caused by an instruction prefetch may result in
misoperation of an external device, such as a FIFO, connected to the area concerned.

2. If there is no device to reply to an external bus request caused by an instruction prefetch,
hangup will occur.

Remedies
1. These illegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 20 bytes of any area.

Rev. 1.0, 08/98, page 385 of 385
HITACHI

	Contents
	Preface
	Section 1 Overview
	1.1 SH7750 Features
	1.2 Block Diagram

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.3 Memory-Mapped Registers
	2.4 Data Format in Registers
	2.5 Data Formats in Memory
	2.6 Processor States
	2.7 Processor Modes

	Section 3 Memory Management Unit (MMU)
	3.1 Overview
	3.2 Register Descriptions
	3.3 Memory Space
	3.4 TLB Functions
	3.5 MMU Functions
	3.6 MMU Exceptions
	3.7 Memory-Mapped TLB Configuration

	Section 4 Caches
	4.1 Overview
	4.2 Register Descriptions
	4.3 Operand Cache (OC)
	4.4 Instruction Cache (IC)
	4.5 Memory-Mapped Cache Configuration
	4.6 Store Queues

	Section 5 Exceptions
	5.1 Overview
	5.2 Register Descriptions
	5.3 Exception Handling Functions
	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.6 Description of Exceptions
	5.7 Usage Notes

	Section 6 Floating-Point Unit
	6.1 Overview
	6.2 Data Formats
	6.3 Registers
	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.6 Graphics Support Functions

	Section 7 Instruction Set
	7.1 Execution Environment
	7.2 Addressing Modes
	7.3 Instruction Set

	Section 8 Pipelining
	8.1 Pipelines
	8.2 Parallel-Executability
	8.3 Execution Cycles and Pipeline Stalling

	Section 9 Power-Down Modes
	9.1 Overview
	9.2 Register Descriptions
	9.3 Sleep Mode
	9.4 Deep Sleep Mode
	9.5 Standby Mode
	9.6 Module Standby Function

	Section 10 Instruction Descriptions
	10.1 ADD ADD binary Arithmetic Instruction
	10.2 ADDC ADD with Carry Arithmetic Instruction
	10.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
	10.4 AND AND logical Logical Instruction
	10.5 BF Branch if False Branch Instruction
	10.6 BF/S Branch if False with delay Slot Branch Instruction
	10.7 BRA BRAnch Branch Instruction
	10.8 BRAF BRAnch Far Branch Instruction
	10.9 BSR Branch to SubRoutine Branch Instruction
	10.10 BSRFBranch to SubRoutine Far Branch Instruction
	10.11 BT Branch if True Branch Instruction
	10.12 BT/S Branch if True with delay Slot Branch Instruction
	10.13 CLRMAC CleaR MAC register System Control Instruction
	10.14 CLRS CleaR S bit System Control Instruction
	10.15 CLRT CleaR T bit System Control Instruction
	10.16 CMP/cond CoMPare conditionally Arithmetic Instruction
	10.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
	10.18 DIV0U DIVide (step 0) as UnsignedArithmetic Instruction
	10.19 DIV1 DIVide 1 step Arithmetic Instruction
	10.20 DMULS.L Double-length MULtiply as SignedArithmetic Instruction
	10.21 DMULU.L Double-length MULtiply as Unsigned Arithmetic Instruction
	10.22 DT Decrement and Test Arithmetic Instruction
	10.23 EXTSEXTend as Signed Arithmetic Instruction
	10.24 EXTU EXTend as Unsigned Arithmetic Instruction
	10.25 FABSFloating-point ABSolute value Floating-Point Instruction
	10.26 FADD Floating-point ADD Floating-Point Instruction
	10.27 FCMP Floating-point CoMPare Floating-Point Instruction
	10.28 FCNVDS Floating-point CoNVert Double to Single Precision
	10.29 FCNVSD Floating-point CoNVert
	10.30 FDIV Floating-point DIVide Floating-Point Instruction
	10.31 FIPR Floating-point Inner Product Floating-Point Instruction
	10.32 FLDI0 Floating-point LoaD mmediate 0.0 Floating Point Instruction
	10.33 FLDI1 Floating-point LoaD Immediate 1.0
	10.34 FLDSFloating-point LoaD to System register
	10.35 FLOAT Floating-point convert from integer
	10.36 FMAC Floating-point Multiply and ACcumulate Floating-Point
	10.37 FMOV Floating-point MOVe Floating-Point Instruction
	10.38 FMOV Floating-point
	10.39 FMUL Floating-point MULtiply Floating-Point Instruction
	10.40 FNEG Floating-point NEGate value Floating-Point Instruction
	10.41 FRCHG FR-bit CHanGe Floating-Point Instruction
	10.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
	10.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
	10.44 FSTS Floating-point STore
	10.45 FSUB Floating-point SUBtract Floating-Point Instruction
	10.46 FTRC Floating-point TRuncate and Convert to integer
	10.47 FTRV Floating-point TRansform Vector
	10.48 JMP JuMP Branch Instruction
	10.49 JSR Jump to SubRoutine Branch Instruction
	10.50 LDC LoaD to Control register System Control Instruction
	10.51 LDS LoaD to FPU System register
	10.52 LDS LoaD to System register System Control Instruction
	10.53 LDTLB LoaD PTEH/PTEL/PTEA to TLB
	10.54 MAC.L Multiply and ACcumulate Long Arithmetic Instruction
	10.55 MAC.W Multiply and ACcumulate Word Arithmetic Instruction
	10.56 MOV MOVe Data Data Transfer Instruction
	10.57 MOV MOVe constant value Data Transfer Instruction
	10.58 MOV MOVe global data Data Transfer Instruction
	10.59 MOV MOVe structure data Data Transfer Instruction
	10.60 MOVA MOVe effective address Data Transfer Instruction
	10.61 MOVCA.L MOVe with Cache block Allocation Data Transfer Instruction
	10.62 MOVT MOVe T bit Data Transfer Instruction
	10.63 MUL.L MULtiply Long Arithmetic Instruction
	10.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
	10.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
	10.66 NEG NEGate Arithmetic Instruction
	10.67 NEGC NEGate with Carry Arithmetic Instruction
	10.68 NOP No OPeration System Control Instruction
	10.69 NOT NOT-logical complement Logical Instruction
	10.70 OCBI Operand Cache Block Invalidate Data Transfer Instruction
	10.71 OCBP Operand Cache Block Purge Data Transfer Instruction
	10.72 OCBWB Operand Cache Block Write Back Data Transfer Instruction
	10.73 OR OR logical Logical Instruction
	10.74 PREF PREFetch data to cache Data Transfer Instruction
	10.75 ROTCL ROTate with Carry Left Shift Instruction
	10.76 ROTCR ROTate with Carry Right Shift Instruction
	10.77 ROTL ROTate Left Shift Instruction
	10.78 ROTR ROTate Right Shift Instruction
	10.79 RTE ReTurn from Exception System Control Instruction
	10.80 RTS ReTurn from Subroutine Branch Instruction
	10.81 SETS SET S bit System Control Instruction
	10.82 SETT SET T bit System Control Instruction
	10.83 SHAD SHift Arithmetic Dynamically Shift Instruction
	10.84 SHAL SHift Arithmetic Left Shift Instruction
	10.85 SHAR SHift Arithmetic Right Shift Instruction
	10.86 SHLD SHift Logical Dynamically Shift Instruction
	10.87 SHLL SHift Logical Left Shift Instruction
	10.88 SHLLn n bits SHift Logical Left Shift Instruction
	10.89 SHLR SHift Logical Right Shift Instruction
	10.90 SHLRn n bits SHift Logical Right Shift Instruction
	10.91 SLEEP SLEEP System Control Instruction
	10.92 STC STore Control register System Control Instruction
	10.93 STS STore System register System Control Instruction
	10.94 STS STore from FPU System register System Control Instruction
	10.95 SUB SUBtract binary Arithmetic Instruction
	10.96 SUBC SUBtract with Carry Arithmetic Instruction
	10.97 SUBV SUBtract with (V flag) underflow check Arithmetic Instruction
	10.98 SWAP SWAP register halves Data Transfer Instruction
	10.99 TAS Test And Set Logical Instruction
	10.100 TRAPA TRAP Always System Control Instruction
	10.101 TST TeST logical Logical Instruction
	10.102 XOR eXclusive OR logical Logical Instruction
	10.103 XTRCT eXTRact Data Transfer Instruction

	Appendix A Address List
	Appendix B Instruction Prefetch Side Effects

