
SH-4

Programming Manual

Preliminary

Version  1.2.1
2/17/98
Hitachi, Ltd.



Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved:  No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.



i

Contents

Section 1   Overview ........................................................................................1
1.1 SH-4 Features .................................................................................................................. 1
1.2 Block Diagram................................................................................................................. 5

Section 2   Data Formats and Registers.............................................................7
2.1 Data Formats.................................................................................................................... 7
2.2 General Registers............................................................................................................. 7
2.3 Floating-Point Registers................................................................................................... 9
2.4 Control Registers ............................................................................................................. 11
2.5 System Registers.............................................................................................................. 12
2.6 Memory-Mapped Registers .............................................................................................. 14

Section 3   Memory Management Unit (MMU) ................................................15
3.1 Overview ......................................................................................................................... 15

3.1.1 Features .............................................................................................................. 15
3.1.2 The Role of the MMU......................................................................................... 15
3.1.3 Register Configuration........................................................................................ 18
3.1.4 Caution ............................................................................................................... 18

3.2 Register Descriptions ....................................................................................................... 19
3.3 Memory Space ................................................................................................................. 23

3.3.1 Physical Memory Space...................................................................................... 23
3.3.2 External Memory Space...................................................................................... 25
3.3.3 Virtual Memory Space........................................................................................ 26
3.3.4 On-Chip RAM Space.......................................................................................... 27
3.3.5 Address Translation ............................................................................................ 27
3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode..................... 28
3.3.7 Address Space Identifier (ASID)......................................................................... 28

3.4 TLB Functions ................................................................................................................. 28
3.4.1 Unified TLB (UTLB) Configuration ................................................................... 28
3.4.2 Instruction TLB (ITLB) Configuration................................................................ 31
3.4.3 Address Translation Method ............................................................................... 32

3.5 MMU Functions............................................................................................................... 34
3.5.1 MMU Hardware Management............................................................................. 34
3.5.2 MMU Software Management.............................................................................. 34
3.5.3 MMU Instruction (LDTLB) ................................................................................ 34
3.5.4 Hardware ITLB Miss Handling........................................................................... 35
3.5.5 Avoiding Synonym Problems.............................................................................. 35



ii

3.6 MMU Exceptions............................................................................................................. 36
3.6.1 Instruction TLB Multiple Hit Exception ............................................................. 36
3.6.2 Instruction TLB Miss Exception ......................................................................... 37
3.6.3 Instruction TLB Protection Violation Exception ................................................. 38
3.6.4 Data TLB Multiple Hit Exception....................................................................... 39
3.6.5 Data TLB Miss Exception................................................................................... 39
3.6.6 Data TLB Protection Violation Exception........................................................... 40
3.6.7 Initial Page Write Exception............................................................................... 41

3.7 Memory-Mapped TLB Configuration .............................................................................. 42
3.7.1 ITLB Address Array ........................................................................................... 42
3.7.2 ITLB Data Array 1 ............................................................................................. 43
3.7.3 ITLB Data Array 2 ............................................................................................. 44
3.7.4 UTLB Address Array.......................................................................................... 45
3.7.5 UTLB Data Array 1 ............................................................................................ 46
3.7.6 UTLB Data Array 2 ............................................................................................ 47

Section 4   Caches............................................................................................49
4.1 Overview ......................................................................................................................... 49

4.1.1 Features .............................................................................................................. 49
4.1.2 Register Configuration........................................................................................ 50

4.2 Register Descriptions ....................................................................................................... 50
4.3 Operand Cache (OC)........................................................................................................ 53

4.3.1 Configuration...................................................................................................... 53
4.3.2 Read Operation................................................................................................... 54
4.3.3 Write Operation.................................................................................................. 55
4.3.4 Write-Back Buffer .............................................................................................. 56
4.3.5 Write-Through Buffer......................................................................................... 57
4.3.6 RAM Mode......................................................................................................... 57
4.3.7 OC Index Mode .................................................................................................. 57
4.3.8 Coherency between Cache and External Memory ............................................... 58
4.3.9 Prefetch Operation.............................................................................................. 58

4.4 Instruction Cache (IC)...................................................................................................... 59
4.4.1 Configuration...................................................................................................... 59
4.4.2 Read Operation................................................................................................... 60
4.4.3 IC Index Mode.................................................................................................... 61

4.5 Memory-Mapped Cache Configuration ............................................................................ 61
4.5.1 IC Address Array................................................................................................ 61
4.5.2 IC Data Array ..................................................................................................... 62
4.5.3 OC Address Array .............................................................................................. 63
4.5.4 OC Data Array.................................................................................................... 65



iii

4.6 Store Queue ..................................................................................................................... 66
4.6.1 SQ Configuration................................................................................................ 66
4.6.2 SQ Write............................................................................................................. 66
4.6.3 Transfer to External Memory.............................................................................. 66
4.6.4 SQ Protection...................................................................................................... 67

Section 5   Exceptions ......................................................................................69
5.1 Overview ......................................................................................................................... 69

5.1.1 Features .............................................................................................................. 69
5.1.2 Control Registers ................................................................................................ 69

5.2 Exception Handling Functions ......................................................................................... 70
5.2.1 Exception Handling Flow ................................................................................... 70
5.2.2 Exception Handling Vector Addresses ................................................................ 71

5.3 Exception Types and Priorities......................................................................................... 72
5.4 Exception Flow................................................................................................................ 75

5.4.1 Exception Flow................................................................................................... 75
5.4.2 Exception Requests and BL Bit........................................................................... 76
5.4.3 Return from Exception Handling ........................................................................ 76

5.5 Description of Exceptions ................................................................................................ 77
5.5.1 Resets ................................................................................................................. 77
5.5.2 General Exceptions............................................................................................. 82
5.5.3 Interrupts ............................................................................................................ 92
5.5.4 Priority Order with Multiple Exceptions ............................................................. 95

Section 6   Floating-Point Unit .........................................................................97
6.1 Overview ......................................................................................................................... 97
6.2 Data Formats.................................................................................................................... 97

6.2.1 Floating-Point Format......................................................................................... 97
6.2.2 Non-Numbers (NaN)........................................................................................... 99
6.2.3 Denormalized Numbers ...................................................................................... 100

6.3 Registers .......................................................................................................................... 101
6.3.1 Floating-Point Registers...................................................................................... 101
6.3.2 Floating-Point Unit Status/Control Register (FPSCR) ......................................... 103
6.3.3 Floating-Point Communication Register (FPUL)................................................. 104

6.4 Rounding ......................................................................................................................... 104
6.5 Floating-Point Exceptions ................................................................................................ 105
6.6 Graphic Support fiture...................................................................................................... 106

6.6.1 Geometoric Instructions...................................................................................... 106
6.6.2 two single precision data transfer ........................................................................ 107



iv

Section 7   Instruction Set ................................................................................109
7.1 Execution Environment.................................................................................................... 109
7.2 Addressing Modes............................................................................................................ 110
7.3 Instruction Set.................................................................................................................. 113

Section 8. Pipelining ........................................................................................125
8.1 Pipeline............................................................................................................................ 125
8.2 Parallel-Executability....................................................................................................... 130
8.3 Execution Cycle and Pipeline Stall .................................................................................. 133

Section 9   Power-Down Modes.......................................................................149
9.1 Overview ......................................................................................................................... 149

9.1.1 Types of Power-Down Modes............................................................................. 149
9.1.2 Register Configuration........................................................................................ 150

9.2 Register Descriptions ....................................................................................................... 151
9.2.1 Standby Control Register (STBCR) .................................................................... 151
9.2.2 Supporting Module Pin High Impedance Control................................................ 153
9.2.3 Supporting Module Pin Pull-Up Control ............................................................. 153

9.3 Sleep Mode...................................................................................................................... 154
9.3.1 Transition to Sleep Mode.................................................................................... 154
9.3.2 Exit from Sleep Mode......................................................................................... 154

9.4 Standby Mode.................................................................................................................. 154
9.4.1 Transition to Standby Mode................................................................................ 154
9.4.2 Exit from Standby Mode..................................................................................... 155
9.4.3 Clock Pause Function ......................................................................................... 156

9.5 Module Standby Function ................................................................................................ 156
9.5.1 Transition to Module Standby Function .............................................................. 156
9.5.2 Exit from Module Standby Function ................................................................... 157

Section 10  Instruction Description ..................................................................159
ADD (Add Binary): Arithmetic Instruction............................................................................ 172
ADDC (Add with Carry): Arithmetic Instruction ................................................................... 173
ADDV (Add with V Flag Overflow Check): Arithmetic Instruction....................................... 174
AND (AND Logical): Logic Operation Instruction ................................................................ 175
BF (Branch if False): Branch Instruction................................................................................ 176
BF/S (Branch if False with Delay Slot): Branch Instruction  Class: Delayed branch instruction177
BRA (Branch): Branch Instruction Class: Delayed branch instruction.................................... 179
BRAF (Branch Far): Branch Instruction  Class: Delayed branch instruction........................... 180
BSR (Branch to Subroutine): Branch Instruction Class: Delayed branch instruction............... 181
BSRF (Branch to Subroutine Far): Branch Instruction  Class: Delayed branch instruction ..... 183
BT (Branch if True): Branch Instruction ................................................................................ 184
BT/S (Branch if True with Delay Slot): Branch Instruction.................................................... 185



v

CLRMAC (Clear MAC Register): System Control Instruction ............................................... 186
CLRS (Clear S Bit): System Control Instruction .................................................................... 186
CLRT (Clear T Bit): System Control Instruction.................................................................... 187
CMP/cond (Compare Conditionally): Arithmetic Instruction ................................................. 188
DIV0S (Divide Step 0 as Signed): Arithmetic Instruction ...................................................... 192
DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction.................................................. 193
DIV1 (Divide Step 1): Arithmetic Instruction ........................................................................ 193
DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction................................ 198
DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction ........................... 199
DT (Decrement and Test): Arithmetic Instruction .................................................................. 200
EXTS (Extend as Signed): Data Transfer Instruction ............................................................. 201
EXTU (Extend as Unsigned): Data Transfer Instruction......................................................... 202
FABS (Floating Point Absolute Value): Floating-Point Instruction ........................................ 203
FADD (Floating Point Add): Floating-Point Instruction ......................................................... 203
FCMP (Floating Point Compare): Floating-Point Instruction.................................................. 206
FCNVDS (Floating Point Convert Double to Single Precision): Floating-Point Instruction .... 209
FCNVSD (Floating Point Convert Single to Double Precision): Floating-Point Instruction .... 211
FDIV (Floating Point Divide): Floating-Point Instruction....................................................... 213
FIPR (Floating Point Inner Product): Floating-Point Instruction............................................. 216
FLDI0 (Floating Point Load 0.0): Floating-Point Instruction.................................................. 218
FLDI1 (Floating Point Load 1.0): Floating-Point Instruction.................................................. 219
FLDS (Floating Point Load to System Register): Floating-Point Instruction........................... 220
FLOAT (Floating Point Convert from Integer): Floating-Point Instruction............................. 221
FMAC (Floating Point Multiply and Accumulate): Floating-Point Instruction ....................... 222
FMOV (Floating Point Move): Floating-Point Instruction ...................................................... 225
FMOV (Floating Point Move Extension): Floating-Point Instruction...................................... 228
FMUL (Floating Point Multiply): Floating-Point Instruction.................................................. 230
FNEG (Floating Point Negate): Floating-Point Instruction ..................................................... 232
FRCHG (FR-Bit Change): Floating-Point Instruction............................................................. 233
FSCHG (SZ-Bit Change): Floating-Point Instruction ............................................................. 234
FSQRT (Floating Point Square Root): Floating-Point Instruction........................................... 235
FSTS (Floating Point Store System Register): Floating-Point Instruction ............................... 237
FSUB (Floating Point Subtract): Floating-Point Instruction.................................................... 238
FTRC (Floating Point Truncate and Convert to Integer): Floating-Point Instruction............... 240
FTRV (Floating Point Transform Vector): Floating-Point Instruction .................................... 243
JMP (Jump): Branch Instruction............................................................................................. 245
JSR (Jump to Subroutine): Branch Instruction........................................................................ 246
LDC (Load to Control Register): System Control Instruction  (Privileged Instruction)........... 247
LDS (Load to FPU System Register): System Control Instruction.......................................... 251
LDS (Load to System Register): System Control Instruction.................................................. 254
LDTLB (Load PTEH/PTEL to TLB): System Control Instruction  (Privileged Only)............. 256
MAC.L (Multiply and Accumulate Long): Arithmetic Instruction ......................................... 257



vi

MOV (Move): Data Transfer Instruction................................................................................ 261
MOV (Move Constant Value): Data Transfer Instruction ....................................................... 265
MOV (Move Global Data): Data Transfer Instruction ............................................................ 267
MOV (Move Displacement Addressing): Data Transfer Instruction ....................................... 270
MOVA (Move Effective Address): Data Transfer Instruction ................................................ 273
MOVCA.L (Move with Cache Block Allocation): Data Transfer Instruction ......................... 274
MOVT (Move T Bit): Data Transfer Instruction .................................................................... 275
MUL.L (Multiply Long): Arithmetic Instruction.................................................................... 276
MULS.W (Multiply as Signed Word): Arithmetic Instruction................................................ 277
MULU.W (Multiply as Unsigned Word): Arithmetic Instruction ........................................... 278
NEG (Negate): Arithmetic Instruction ................................................................................... 279
NEGC (Negate with Carry): Arithmetic Instruction ............................................................... 280
NOP (No Operation): System Control Instruction .................................................................. 281
NOT (NOT—Logical Complement): Logic Operation Instruction......................................... 282
OCBI (Operand Cache Block Invalidate): Data Transfer Instruction ...................................... 283
OCBP (Operand Cache Block Purge): Data Transfer Instruction............................................ 284
OCBWB (Operand Cache Block Write Back): Data Transfer Instruction............................... 285
OR (OR Logical) Logic Operation Instruction ....................................................................... 286
PREF (Prefetch Data to Cache).............................................................................................. 288
ROTCL (Rotate with Carry Left): Shift Instruction................................................................ 289
ROTCR (Rotate with Carry Right): Shift Instruction ............................................................. 290
ROTL (Rotate Left): Shift Instruction.................................................................................... 291
ROTR (Rotate Right): Shift Instruction.................................................................................. 292
RTE (Return from Exception): System Control Instruction (Privileged Only) ........................ 293
RTS (Return from Subroutine): Branch Instruction ................................................................ 294
SETS (Set S Bit): System Control Instruction ........................................................................ 295
SETT (Set T Bit): System Control Instruction........................................................................ 296
SHAD (Shift Arithmetic Dynamically): Shift Instruction ....................................................... 297
SHAL (Shift Arithmetic Left): Shift Instruction..................................................................... 299
SHAR (Shift Arithmetic Right): Shift Instruction................................................................... 300
SHLD (Shift Logical Dynamically): Shift Instruction ............................................................ 301
SHLL (Shift Logical Left): Shift Instruction .......................................................................... 303
SHLLn (Shift Logical Left n Bits): Shift Instruction .............................................................. 304
SHLR (Shift Logical Right): Shift Instruction........................................................................ 306
SHLRn (Shift Logical Right n Bits): Shift Instruction............................................................ 307
SLEEP (Sleep): System Control Instruction (Privileged Only) ............................................... 309
STC (Store Control Register): System Control Instruction ..................................................... 310
STS (Store from FPU System Register): System Control Instruction...................................... 315
STS (Store System Register): System Control Instruction ...................................................... 318
SUB (Subtract Binary): Arithmetic Instruction ...................................................................... 320
SUBC (Subtract with Carry): Arithmetic Instruction.............................................................. 321
SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction ............................... 322
SWAP (Swap): Data Transfer Instruction............................................................................... 323



vii

TAS (Test and Set): Logic Operation Instructions.................................................................. 324
TRAPA (Trap Always): System Control Instruction............................................................... 325
TST (Test Logical): Logic Operation Instruction ................................................................... 326
XOR (Exclusive OR Logical): Logic Operation Instruction ................................................... 328
XTRCT (Extract): Data Transfer Instruction.......................................................................... 330



viii



1

Section 1   Overview

1.1 SH-4 Features

The SH-4 is a 32-bit RISC (reduced instruction set computer) microcomputer, featuring object
code upward-compatibility with SH-1, SH-2, SH-3, and SH-3E  microcomputers.  It includes an
8-kbyte instruction cache, a 16-kbyte operand cache with a choice of copy-back or write-through
mode, and an MMU (memory management unit) with a 4-entry full-associative instruction TLB
(translation lookaside buffer) and a 64-entry full-associative unified TLB.

The SH-4 has an on-chip bus state controller (BSC) that allows direct connection to DRAM,
SDRAM, and SGRAM without external circuitry.  Its 16-bit fixed-length instruction set enables
program code size to be reduced by almost 50% compared with 32-bit instructions.

The features of the SH-4 are summarized in Table 1-1.
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Table 1.1 SH-4 Features

Item Features

LSI • Frequency: 167Mhz

• Performance:

 300MIPS (167Mhz)

 1.17GFLOPS (167Mhz)

• Superscalar: Paralell execution of two instructions

• Voltage: 2.5V(internal), 3.3V(IO)

• Package: 208-pin QFP

• External bus:

 Separate 26-bit address+64-bit data

 1/2, 1/3, 1/4, 1/6, 1/8 external bus frequency (vs. internal)

CPU • Original Hitachi SH architecture

• 32-bit internal data bus

• General-register files:

 Sixteen 32-bit general registers (and eight 32-bit shadow registers)

 Seven 32-bit control registers

 Four 32-bit system registers

• RISC-type instruction set (upward compatibility with the SH series):

 Instruction length: 16-bit fixed length for improved code efficiency

 Load-store architecture

 Delayed branch instructions

 Conditional execution

 Instruction set based on C language

• Two-way superscalar execution with FPU

• Instruction execution time: two instructions/cycle at maximum

• Logical address space: 4 Gbytes (448-Mbyte physical memory space)

• Space identifier ASID: 8 bits, 256 logical address spaces

• On-chip multiplier

• Five-stage pipeline
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Table 1.1 SH-4 Features (Cont.)

Item Features
FPU • Integrated floating-point co-processor

• Single (32b) and double (64b) precision supported
• IEEE754 compliant data type and exception suppoted
• Round mode: round-to-nearest, round-to-zero
• Denorm mode: flush-to-zero, conform IEEE754
• Floating-point registers: 32 bit x 16 word x 2 bank
• Single x 16 word / Double x 8 word / x 2 bank
• 32-bit CPU-FPU interface register(FPUL)
• FMAC (multiply and accumulate) instruction supported
• FDIV (divide) / FSQRT (square root) instructions supported
• FLD0 / FLD1 (load constant 0/1) instructions supported
• Instruction execution time

 Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single), 8 cycles (double)
 Pitch      (FMAC/FADD/FSUB/FMUL): 1 cycle (single), 6 cycles (double)
 Note: FMAC is supported for only single precision.

• 3D graphic instructions:
 4-dimentional vector transformation and matrix operation (FTRV), 4 cycles (pitch), 7

cycles (latency)
 Inner product of 4-dimentional vectors (FIPR), 1cycle (pitch), 4 cycles (latency)

• Five-stage pipeline
Clock pulse
generator (CPG)

• Clock mode:
 CPU frequency: 1, 1/2, 1/4, 1/8 (vs 167MHz)
 Bus frequency: 1/2, 1/3, 1/4, 1/6, 1/8 (vs 167MHz)
 Peripheral frequency: 1/2, 1/3, 1/4, 1/6, 1/8 (vs 167Mhz)

• Power-down modes:
 Sleep mode
 Standby mode
 Module stop function

• One watch-dog timer channel
Memory management
unit
(MMU)

• 4 Gbytes of address space, 256 address spaces (ASID 8 bits)
• Single virtual address mode and multiple virtual address mode
• Supports multiple page sizes: 1k, 4k, 64k, 1Mbytes
• 4-entry full-associative TLB for instruction
• 64-entry, full-associative TLB for instruction and operand
• Supports software selection of replacement method and round-robin replacement

algorithms
• Contents of TLB are directly accessible by address mapping

Cache memory • Instruction cache (IC)
 8k bytes, direct mapping
 256 entries, 32-byte block length
 Normal mode (8-kbyte cache)
 RAM mode (4-kbyte cache + 4-kbyte RAM)

• Operand cache (OC)
 16k bytes, direct mapping
 512 entries, 32-byte block length
 Normal mode (16-kbyte cache)
 RAM mode (8-kbyte cache + 8-kbyte RAM)
 Selectable write policy (copy-back/write-through)

• 1-stage copy-back buffer, 1-stage write-through buffer
• Contents of cache memories can be accessed directly by address mapping (can be used

as on-chip memory)
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Table 1.1 SH-4 Features (Cont.)

Item Features
Interrupt
controller
(INTC)

• 5 independent external interrupts: NMI, IRL3 - IRL0
• 15-level encoded external interrupts: IRL3 - IRL0
• On-chip peripheral interrupts: set priority levels for each module

User break controller
(UBC)

• Supports debugging by user break interrupts
• 2 break channels
• Addresses, data values, type of access, and data size can all be set as break conditions
• Supports a sequential break function

Bus state controller
(BSC)

• Supports external memory access
 64/32/16/8-bit external data bus

• Physical address space divided into seven areas, each a maximum 64 Mbytes, with the
following features settable for each area:
 Bus size (8, 16, 32, or 64 bits)
 Number of wait cycles (also supports a hardware wait function)
 Setting the type of space enables direct connection to DRAM, synchronous DRAM,

synchronous GRAM, and burst ROM
 Supports fast page mode and EDO for DRAM
 Supports PCMCIA interface
 Outputs chip select signal (CS0–CS6) for corresponding area

• DRAM/synchronous DRAM/synchronous GRAM refresh function
 Programmable refresh interval
 Supports CAS-before-RAS refresh and self-refresh modes

• DRAM/synchronous DRAM/synchronous GRAM burst access function
• Usable as either big or little endian machine

Direct memory
access controller
(DMAC)

• 4-channel physical address DMA controller
• Transfer  data size: 8, 16, 32, 64 bits, or 32 bytes
• Address mode:

 1-bus-cycle single address mode
 2-bus-cycle dual address mode

• Transfer request: external, on-chip module, or auto-request
• Bus mode: cycle steal, or burst mode

Timer (TMU) • 3-channel auto-reload type 32-bit timer
• Input capture function
• 7 types of counter input clocks can be selected

Real time clock
(RTC)

• Built-in clock and calendar functions
• On-chip 32-kHz crystal oscillator circuit with a maximum resolution (cycle interrupt) of

1/256 second

Serial communi-
cation interface
(SCI1,2)

• 2 full-duplex communication channels (SCI1,2)
• Channel 1 (SCI1)

 Select start-stop sync mode or clock sync system
 Supports smart card interface

• Channel 2 (SCI2)
 Supports clock sync system
 Integrates 16-byte FIFO for transmitter and reciever each

Package • 208-pin QFP
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1.2 Block Diagram

Figure 1.1 is a functional block diagram of the SH-4.
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Figure 1.1   SH-4 Functional Block Diagram
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Section 2   Data Formats and Registers

2.1 Data Formats

The data formats which are supported in SH4, are shown in figure 2.1.

Byte (8 bits)

Word (16 bits)


Longword (32 bits)


Single-precision floating-point (32 bits)


Double-precision floating-point (64 bits)

08

015

031

031 30 22

fractionexps

063 62 51

exps fraction

Figure 2.1   Data Formats

2.2 General Registers

Figure 2.2 shows the relationship between the processor modes and general registers. The SH4
has twenty-four 32-bit general registers (R0_BANK0–R7_BANK0, R0_BANK1–R7_BANK1,
and R8–R15). However, only 16 of these can be accessed as general registers R0–R15 in one
processor mode. The SH4 has two processor modes: privileged mode and user mode. R0–R7 are
assigned as follows.

• R0_BANK0–R7_BANK0

In user mode (SR.MD = 0), or in privileged mode (SR.MD = 1) with BANK0 referencing
(SR.RB = 0), R0–R7 are assigned to R0_BANK0–R7_BANK0.

• R0_BANK1–R7_BANK1

In privileged mode (SR.MD = 1) with BANK1 referencing (SR.RB = 1), R0–R7 are assigned
to R0_BANK1–R7_BANK1. The mode is always changed to privileged mode after a reset,
exception, and interrupt.
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R0  Bank 0
R1  Bank 0

R2  Bank 0

R3  Bank 0

R4  Bank 0

R5  Bank 0

R6  Bank 0

R7  Bank 0

R0_Bank
R1_Bank

R2_Bank

R3_Bank

R4_Bank

R5_Bank

R6_Bank

R7_Bank

(SR.MD = 1 and SR.RB = 1)

R0
R1

R2

R3

R4

R5

R6

R7

R0  Bank 1

R1  Bank 1

R2  Bank 1

R3  Bank 1

R4  Bank 1

R5  Bank 1

R6  Bank 1

R7  Bank 1

R0
R1

R2

R3

R4

R5

R6

R7

R0_Bank
R1_Bank

R2_Bank

R3_Bank

R4_Bank

R5_Bank

R6_Bank

R7_Bank

SR.MD = 0
or

(SR.MD = 1 and SR.RB = 0)

R8
R9

R10

R11

R12

R13

R14

R15

R8
R9

R10

R11

R12

R13

R14

R15

R8
R9

R10

R11

R12

R13

R14

R15

Figure 2.2   General Registers

Programming Note: As the user’s R0–R7 are assigned to R0_BANK0–R7_BANK0, and R0–R7
after a reset, exception, or interrupt are assigned to R0_BANK1–R7_BANK1, it may not be
necessary for the interrupt handler to save and restore the user’s R0–R7 (R0_BANK0–
R7_BANK0).
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2.3 Floating-Point Registers

Figure 2.3 shows the floating-point registers. There are thirty-two 32-bit floating-point registers,
interleaved into two banks (FPR0_BANK0–FPR15_BANK0 and FPR0_BANK1–
FPR15_BANK1). These are referenced as FR0–FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0–
XF15, XD0/2/4/6/8/10/12/14, or XMTRX. The corresponding between FPRn_BANKi and the
reference name is determined by the FR bit in FPSCR, see Figure 2.3.

FPR0  Bank 0
FPR1  Bank 0

FPR2  Bank 0

FPR3  Bank 0

FPR4  Bank 0

FPR5  Bank 0

FPR6  Bank 0

FPR7  Bank 0

FPR8  Bank 0

FPR9  Bank 0

FPR10  Bank 0

FPR11  Bank 0

FPR12  Bank 0

FPR13  Bank 0

FPR14  Bank 0

FPR15  Bank 0






XF0
XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

XD0


XD2



XD4



XD6



XD8



XD10



XD12



XD14

XMTRX

FPSCR.FR = 1

DR0


DR2



DR4



DR6



DR8



DR10



DR12



DR14

FV0






FV4







FV8







FV12

FR0
FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

FPSCR.FR = 0

FPR0  Bank 1

FPR1  Bank 1

FPR2  Bank 1

FPR3  Bank 1

FPR4  Bank 1

FPR5  Bank 1

FPR6  Bank 1

FPR7  Bank 1

FPR8  Bank 1

FPR9  Bank 1

FPR10  Bank 1

FPR11  Bank 1

FPR12  Bank 1

FPR13  Bank 1

FPR14  Bank 1

FPR15  Bank 1

FR0
FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

DR0


DR2



DR4



DR6



DR8



DR10



DR12



DR14

FV0






FV4







FV8







FV12

XD0


XD2



XD4



XD6



XD8



XD10



XD12



XD14

XMTRX XF0
XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

Figure 2.3   Floating-Point Registers
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• Floating-point registers, FPRn_BANKi (32 registers)

FPR0_BANK0, FPR1_BANK0, FPR2_BANK0, FPR3_BANK0, FPR4_BANK0,
FPR5_BANK0, FPR6_BANK0, FPR7_BANK0, FPR8_BANK0, FPR9_BANK0,
FPR10_BANK0, FPR11_BANK0, FPR12_BANK0, FPR13_BANK0, FPR14_BANK0,
FPR15_BANK0

FPR0_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4_BANK1,
FPR5_BANK1, FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1,
FPR10_BANK1, FPR11_BANK1, FPR12_BANK1, FPR13_BANK1, FPR14_BANK1,
FPR15_BANK1

• Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0–FR15 are assigned to FPR0_BANK0–FPR15_BANK0.
When FPSCR.FR = 1, FR0–FR15 are assigned to FPR0_BANK1–FPR15_BANK1.

• Double-precision floating-point registers or Single-precision floating-point register pair,
DRi (8 registers): a DR register consists of two FR registers

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

• Single-precision floating-point vector registers, FVi (4 registers): an FV register consists of
four FR registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

• Single-precision floating-point extension registers, XFi (16 registers)

When FPSCR.FR = 0, XF0–XF15 are assigned to FPR0_BANK1–FPR15_BANK1.
When FPSCR.FR = 1, XF0–XF15 are assigned FPR0_BANK0–FPR15_BANK0.

• Single-precision floating-point extension register pair, XDi (8 registers): An XD register
consists of two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14,
XF15}

• Single-precision floating-point extension register matrix, XMTRX: XMTRX consists of all
16 XF registers

XMTRX = XF0 XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15
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2.4 Control Registers

• Processor Status Register, SR (32-bit, privilege protection, initial value = 0111 0000 0000
0000 0000 00?? 1111 00??)

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0

Res MD RB BL Reserved FD Reserved M Q IMASK Res S T

 MD: Processor Mode

MD = 0: User mode (some instructions can not be executed and some resources can not be
accessed)

MD = 1: Privileged mode

 RB: General Register Bank Specifier in Privileged mode (set to 1 by a reset, exception,
or interrupt)

RB = 0: R0_BANK0–R7_BANK0 are accessed as general registers R0–R7.
(R0_BANK1–R7_BANK1 are accessed as LDC/STC R0_BANK–R7_BANK.)

RB = 1: R0_BANK1–R7_BANK1 are accessed as general registers R0–R7.
(R0_BANK0–R7_BANK0 are accessed as LDC/STC R0_BANK–R7_BANK.)

 BL: Exception/Interrupt Block Bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. A reset occurs when a general exception
isrequested.

 FD: FPU Disable Bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU
instruction is in a delay slot, a slot FPU disable exception is generated.
(FPU instructions: 0xF*** instructions, LDC(.L)/STS(.L) instructions for
FPUL/FPSCR)

 M, Q: Used by the DIV0S, DIV0U, and DIV1 instructions.

 IMASK: Interrupt Mask Level

 External interrupts, whose level is less than IMASK, are masked.

 S: Specifies a saturation operation for MAC instructions.

 T: a true/false condition, or carry/borrow bit.

 Res and
Reserved: When READ, Zero is read from the reserved field. When WRITE, a value of
the corresponding fields in the source operand should be zero.

• Saved Status Register, SSR (32-bit, privilege protection, initial value = undefined)

The contents of SR are saved to SSR when an exception or interrupt is taken.

• Saved Program Counter, SPC (32-bit, privilege protection, initial value = undefined)

The address of the interrupted instruction is saved to SPC.
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• Global Base Register, GBR (32-bit, initial value = undefined)

GBR is referenced as the base address in a GBR-based MOV instructions.

• Vector Base Register, VBR (32-bit, privilege protection, initial value = H’0000 0000)

VBR is referenced as the base address of the transition target address on an exception and
interrupt.

Transition address = VBR + vector offset

• Saved General Register 15, SGR (32-bit, privilege protection, initial value = undefined)

The contents of R15 are saved to SGR when an exception or interrupt is taken.

• Debug Vector Base Register, DBR (32-bit, privilege protection, initial value = undefined)

When the user break debug function is enabled (BRCR.UBDE = 1), DBR is referenced as the
transition target address to a user break handler. In this case, it is not VBR.

2.5 System Registers

• Multiply and Accumulate Register High, MACH (32-bit, initial value = undefined)

• Multiply and Accumulate Register Low, MACL (32-bit, initial value = undefined)

MACH/MACL is referenced as the accumulator in a MAC instruction, and as the destination
register in a MUL instruction.

• Procedure Register, PR (32-bit, initial value = undefined)

The return address is saved into PR on a subroutine calls(BSR, BSRF, and JSR). The saved
return address in PR is referenced on a subroutine return(RTS).

• Program Counter, PC (32-bit, initial value = H’A000 0000)

PC indicates the instruction fetch address.

• Floating-Point Unit Status/Control Register, FPSCR (32-bit, initial value = H’00040001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0

Reserved FR SZ PR DN Cause Enable Flag RM

 FR: Floating-Point Register Bank

FR = 0: FPR0_BANK0–FPR15_BANK0 are assigned to FR0–FR15; FPR0_BANK1–
FPR15_BANK1 are assigned to XF0–XF15.

FR = 1: FPR0_BANK0–FPR15_BANK0 are assigned to XF0–XF15; FPR0_BANK1–
FPR15_BANK1 are assigned to FR0–FR15.

 SZ: Transfer Size Mode

SZ = 0: FMOV instruction transfers a single-precision floating-point number.

SZ = 1: FMOV transfers 64-bit data which may consist of two single-precision
 floating-point numbers.

 PR: Precision Mode

PR = 0: Floating-point instructions are executed as single-precision operations.
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PR = 1: Floating-point instructions are executed as double-precision operations (the
operation of graphics-related instructions is undefined).

The mode ‘SZ=1 and PR=1’ is reserved: FPU operation is undefined on that mode.

 DN: Denormalization Mode

DN = 0: A denormalized number is treated as a denormalized number.

DN = 1: A denormalized number is treated as zero.

FPU
Error (E)

Invalid
Op. (V)

Zero
Div. (Z)

Overflow
(O)

Underflow
(U)

Indexact
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

Non Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

Non Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

When an FPU computation instruction is executed, the cause field is set to zero, at first.
Then the corresponding bit in the cause and flag fields is set to 1, if an FPU exception is
requested. The flag field retains the status of the requested exceptions since when the flag
field had been cleared most recently.

 RM: Rounding Mode

RM = 00: Round to Nearest

RM = 01: Round to Zero

RM = 10: Reserved

RM = 11: Reserved

Programming Notes: When SZ=1 and Big Endian, FMOV can be used as a double-precision
floating-point load or store. When Little Endian, single-precision floating-point FMOV must be
executed twice to load or store a double- precision floating-point  number.
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2.6 Memory-Mapped Registers

Appendix A shows control registers mapped to memory. The control registers are double-
mapped to the following memory areas. All registers have two addresses:

- 0x1F00 0000 to 0x1FFF FFFF, and
- 0xFF00 0000 to0xFFFF FFFF.

These two areas are used as follows.

0x1F00 0000–0x1FFF FFFF: This area should be referenced on a address translation mode. The
physical page number field in TLB does not cover 32-bit address space, because the external
memory is defined as a 29-bit address space  in SH4 Architecture. When address translating, the
memory-mapped registers can be accessed to set a page number in this area into the
corresponding field of TLB. The length of in an access that involves address translation. Use the
page number in this area as the actual page number set in the TLB. When address translation is
not performed, the operation of an access to this area is undefined.

• 0xFF00 0000–0xFFFF FFFF: This area should be referenced in an access without an address
translation.

Undefined locations in the two areas should not be accessed. The operation of an access to the
undefined location is not defined. Additionally, the memory-mapped registers should be
accessed with the defined data size. When accessing with an illegal size, the operation is also
undefined.

Programming Note: An access to area 0xFF00 0000–0xFFFF FFFF in user mode causes an
address error. In user mode, memory-mapped registers can be referenced by an access with
address translation.
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Section 3   Memory Management Unit (MMU)

3.1 Overview

3.1.1 Features

The SH-4 can handle 29-bit external memory space from an 8-bit address space identifier and
32-bit virtual address space. Address translation from virtual address to physical address is
performed using the memory management unit (MMU) built into the SH-4. The MMU performs
high-speed address translation by caching user-created address translation table information in
an address translation buffer (translation lookaside buffer: TLB). The SH-4 has four instruction
TLB (ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by
hardware. A paging system is used for address translation, with support for four page sizes (1, 4,
and 64 kbyte, and 1 Mbyte). It is possible to set the virtual address space access right and
implement storage protection in privileged mode and user mode, respectively.

3.1.2 The Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in
figure 3.1, when a process is smaller in size than the physical memory, the entire process can be
mapped onto physical memory, but if the process increases in size to the point where it does not
fit into physical memory, it becomes necessary to divide the process into smaller parts, and map
the parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this
mapping onto physical memory executed consciously by the process itself imposes a heavy
burden on the process. The virtual memory system was devised as a means of handling all
physical memory mapping to reduce this burden ((2)). With a virtual memory system, the size of
the available virtual memory is much larger than the actual physical memory, and processes are
mapped onto this virtual memory. Thus processes only have to consider their operation in virtual
memory, and mapping from virtual memory to physical memory is handled by the MMU. The
MMU is normally managed by the OS, and physical memory switching is carried out so as to
enable the virtual memory required by a task to be mapped smoothly onto physical memory.
Physical memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time
sharing system (TSS) that allows a number of processes to run simultaneously ((3)). Running a
number of processes in a TSS did not increase efficiency since each process had to take account
of physical memory mapping. Efficiency is improved and the load on each process reduced by
the use of a virtual memory system ((4)). In this system, virtual memory is allocated to each
process. The task of the MMU is to map a number of virtual memory areas onto physical
memory in an efficient manner. It is also provided with memory protection functions to prevent
a process from inadvertently accessing another process’s physical memory.
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When address translation from virtual memory to physical memory is performed using the
MMU, it may happen that the translation information has not been recorded in the MMU, or the
virtual memory of a different process is accessed by mistake. In such cases, the MMU will
generate an exception, change the physical memory mapping, and record the new address
translation information.

Although the functions of the MMU could be implemented by software alone, having address
translation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer:
TLB) is provided in hardware, and frequently used address translation information is placed
here. The TLB can be described as a cache for address translation information. However, unlike
a cache, if address translation fails—that is, if an exception occurs—switching of the address
translation information is normally performed by software. Thus memory management can be
performed in a flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to
physical memory: the paging method, using fixed-length address translation, and the segment
method, using variable-length address translation. With the paging method, the unit of
translation is a fixed-size address space called a page (usually from 1 to 64 kbyte in size).

In the following descriptions, the address space in virtual memory in the SH-4 is referred to as
virtual address space, and the address space in physical memory as physical address space.
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(2)

Process 1

Physical
memory

Process 1
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Process 1
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Process 3

Virtual
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Virtual
memory
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memoryProcess 1

Process 1
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MMU

MMU

(4)(3)
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Figure 3.1   Role of the MMU
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3.1.3 Register Configuration

The MMU registers are shown in table 3.1.

Table 3.1 MMU Registers

Name Abbreviation R/W Size Initial Value * 1 Address * 2

Page table entry high register PTEH R/W Longword Undefined 0xFF00 0000

Page table entry low register PTEL R/W Longword Undefined 0xFF00 0004

Page table entry  assistance
register

PTEA R/W Longword Undefined 0xFF00 0034

Translation table base register TTB R/W Longword Undefined 0xFF00 0008

TLB exception address
register

TEA R/W Longword Undefined 0xFF00 000C

MMU control register MMUCR R/W Longword 0x0000 0000 0xFF00 0010

Notes: 1. The initial value is the value after a power-on reset or manual reset.

2. This is the address when using the virtual/physical address space P4 area. When making an access
from physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

3.1.4 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.
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3.2 Register Descriptions

There are six MMU-related registers.

1. PTEH

081031

2. PTEL

081031

4. TTB

031

5. TEA

031

6. MMUCR

08162431

9 7

VPN ASID

2829

PPN

- -

- - -

9 7 6 5 4 3 2 1

WTSHDCPR

SZ

V-

TTB

Virtual address at which MMU exception or address error occurred

26
LRUI

18

URB

15 10

URC SV TI AT----- -----

is the reserved bit,  so the written data must be 0, and the read data is 
undefined.

SQMD

3. PTEA

031 4 3 2

SATC

Figure 3.2   MMU-Related Registers
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1. Page table entry high register (PTEH)

Longword access to PTEH can be performed from H'FF00 0000 in the P4 area and H'1F00
0000 in area 7. PTEH consists of the virtual page number (VPN) and address space identifier
(ASID). When an MMU exception or address error exception occurs, the VPN of the virtual
address at which the exception occurred is set in the VPN field by hardware. VPN varies
according to the page size, but the VPN set by hardware when an exception occurs consists
of the upper 22 bits of the virtual address which caused the exception. VPN setting can also
be carried out by software. The number of the currently executing process is set in the ASID
field by software. ASID is not updated by hardware. VPN and ASID are recorded in UTLB
by means of the LDLTB instruction.

2. Page table entry low register (PTEL)

Longword access to PTEL can be performed from H'FF00 0004 in the P4 area and H'1F00
0004 in area 7. PTEL is used to hold the physical page number and page management
information to be recorded in UTLB by means of the LDTLB instruction. The contents of
this register are not changed unless a software directive is issued.

3. Page table entry assistance register (PTEA)

Longword access to PTEA can be performed from H’FF000034 in the P4 area and
H’1F000034 in area7.  PTEA is used to store assistant bits for PCMCIA access to UTLB by
means of the LDTLB instruction.  The contents of this register are not changed unless a
software directive is issued.

4. Translation table base register (TTB)

Longword access to TTB can be performed from H'FF00 0008 in the P4 area and H'1F00
0008 in area 7. TTB is used, for example, to hold the base address of the currently used page
table. The contents of TTB are not changed unless a software directive is issued. This
register can be freely used by software.

5. TLB exception address register (TEA)

Longword access to TEA can be performed from H'FF00 000C in the P4 area and H'1F00
000C in area 7. After an MMU exception or address error exception occurs, the virtual
address at which the exception occurred is set in TEA by hardware. The contents of this
register can be changed by software.

6. MMU control register (MMUCR)

LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

SQMD: Store queue mode bit

SV: Single virtual mode bit

TI: TLB invalidate

AT: Address translation bit
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Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and
H'1F00 0010 in area 7. The individual bits perform MMU settings as shown below.
Therefore, MMUCR rewriting should be performed by a program in the P1 or P2 area.
MMUCR contents can be changed by software. The LRUI bits and URC bits may also be
updated by hardware.

LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be
   replaced in the event of an ITLB miss. The entry to be purged from ITLB can be
   confirmed using the LRUI bits. LRUI is updated by means of the algorithm shown
   below.

LRUI

[5] [4] [3] [2] [1] [0]

When using ITLB entry 0 0 0 0 — — —

When using ITLB entry 1 1 — — 0 0 —

When using ITLB entry 2 — 1 — 1 — 0

When using ITLB entry 3 — — 1 — 1 1

Other than the above — — — — — —

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by
an ITLB miss. An asterisk in this table means “don’t care”.

LRUI

[5] [4] [3] [2] [1] [0]

ITLB entry 0 is updated 1 1 1 * * *

ITLB entry 1 is updated 0 * * 1 1 *

ITLB entry 2 is updated * 0 * 0 * 1

ITLB entry 3 is updated * * 0 * 0 0

Other than the above Setting prohibited

Ensure that values for which “Setting prohibited” is indicated in the above table are not set at
the discretion of software. After a power-on or manual reset the LRUI bits are initialized to
0, and therefore a prohibited setting is never made by a hardware update.

URB: Bits that indicate the UTLB entry boundary at which replacement is to be
 performed. Valid only when URB > 0.

URC: Random counter for indicating the UTLB entry for which replacement is to be
 performed with an LDTLB instruction. URC is incremented each time UTLB
 is accessed. When URB > 0, URC is reset to 0 when the condition URC =
 URB occurs. Also note that, if a value is written to URC by software which
 results in the condition URC > URB, incrementing is first performed in excess
 of URB until URC == H'3F. URC is not incremented by an LDTLB
 instruction.
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SQMD:   Store queue mode bit.  Specifies the right of access to the store queues.

0:  User/privileged access possible

1:  Privileged access possible (address error exception in case of user access)

SV: Bit that switches between single virtual memory mode and multiple virtual memory
 mode.

0:  Multiple virtual memory mode

1:  Single virtual memory mode

When this bit is changed, ensure that 1 is also written to the TI bit.

TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always
 returns 0 when read.

AT: Specifies MMU enabling or disabling.

0:  MMU disabled

1:  MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that
 does not use the MMU, therefore, the AT bit should be cleared to 0.
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3.3 Memory Space

3.3.1 Physical Memory Space

The SH-4 supports a 32-bit physical memory space, and can access a 4-Gbyte address space.
When the MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as shown
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memory
space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Gbyte space from the P0 area to the P4 area
can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing
P1~P4 area (except Store queue area)  in user mode will cause an address error.

Privileged mode User mode

0x0000 00000x0000 0000

0x8000 0000

Address error

0xFFFF FFFF0xFFFF FFFF

0x8000 0000

Cacheable

P0 area

0xA000 0000

0xC000 0000

0xE000 0000

P1 area

P2 area


P3 area

P4 area

U0 area

Cacheable

Cacheable

Non-Cacheable

AREA0
AREA1
AREA2
AREA3
AREA4
AREA5

AREA6
AREA7

External 
memory space

Address error

Store queue area 0xE000 0000
0xE400 0000

Cacheable

Non-Cacheable

Figure 3.3   Physical Memory Space (MMUCR.AT == 0)

P0, P1, P3, U0 Areas: The P0, P1, P3, and U0 areas can be accessed using the cache. Whether
or not the cache is used is determined by the cache control register (CCR). When the cache is
used, switching between the copy-back method and the write-through method for write accesses
is outside the P1 area specified by the CCR.WT bit.  P1 area switching follows the CCR.CB bit
specification. Zeroizing the upper 3 bits of an address in these areas gives the corresponding
external memory space address. However, since area 7 in the external memory space is a
reserved area, a reserved area also appears in these areas.
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P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3
bits of an address gives the corresponding external memory space address. However, since area
7 in the external memory space is a reserved area, a reserved area also appears in this area.

P4 Area: The P4 area is mapped onto SH-4 built-in I/O channels. This area cannot be accessed
using the cache. The P4 area is shown in detail in figure 3.4.

0xE000 0000

0xF000 0000

Store queue area

0xF100 0000

0xF200 0000

0xF300 0000

0xF400 0000

0xF500 0000

0xF600 0000

0xF700 0000

0xF800 0000

0xFF00 0000

Instruction cache address array

Instruction cache data array
Instruction TLB address array

Instruction TLB data array 1,2

Operand cache address array

Operand cache data array


Unified TLB address array

Unified TLB data array 1,2

Reserved area

Control register area

0xE400 0000

Reserved area

Figure 3.4   P4 Area

The area from 0xE0000000 to 0xE3FF FFFF comprises addresses for accessing the store queues
(SQ).  When the MMU is disabled (MMUCR.AT=0), the SQ access right is specified by the
MMUCR.SQMD bit. (See section 4.6.)

The area from 0xF000 0000 to 0xF0FF FFFF is used for direct access to the instruction cache
address array. (See section 4.5.1.)

The area from 0xF100 0000 to 0xF1FF FFFF is used for direct access to the instruction cache
data array. (See section 4.5.2.)

The area from 0xF200 0000 to 0xF2FF FFFF is used for direct access to the instruction TLB
address array. (See section 3.7.1.)
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The area from 0xF300 0000 to 0xF3FF FFFF is used for direct access to the instruction TLB
data array 1,2. (See section 3.7.2,3.7.3)

The area from 0xF400 0000 to 0xF4FF FFFF is used for direct access to the operand cache
address array. (See section 4.5.3.)

The area from 0xF500 0000 to 0xF5FF FFFF is used for direct access to the operand cache data
array. (See section 4.5.4.)

The area from 0xF600 0000 to 0xF6FF FFFF is used for direct access to the common TLB
address array. (See section 3.7.4.)

The area from 0xF700 0000 to 0xF7FF FFFF is used for direct access to the common TLB data
array1,2. (See section 3.7.5, 3.7.6.)

The area from 0xFF00 0000 to 0xFFFF FFFF is the on-chip supporting module control register
area.

3.3.2 External Memory Space

The SH-4 supports a 29-bit external memory space. The external memory space is divided into 8
areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, SDRAM, DRAM,
and PCMCIA. Area 7 is a reserved area. See section 13, External Bus Control, for details.

0x0000 0000

0x0400 0000


0x0800 0000


0x0C00 0000


0x1000 0000


0x1400 0000


0x1800 0000


0x1C00 0000

0x1FFF FFFF

Area 0

Area 1


Area 2


Area 3


Area 4


Area 5


Area 6

Area 7 (reserved area)

Figure 3.5   External Memory Space
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3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the P0, P3, and U0 areas of the physical memory space
in the SH-4 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte,
page units. By using an 8-bit address space identifier, the P0,U0,P3 and Store queue areas can be
increased to a maximum of 256. This is called the virtual memory space. Mapping from virtual
memory space to 29-bit external memory space is carried out using the TLB. Only when area 7
in external memory space is accessed using virtual memory space, addresses 0x1F00 0000 to
0x1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area
control register area in the physical memory space. Virtual memory space is illustrated in figure
3.6.

Privileged mode User mode

Address error

Cacheable 
Address translation possible

P0 area

P1 area

P2 area


P3 area

P4 area

U0 area

AREA0
AREA1
AREA2

AREA3
AREA4
AREA5

AREA6
AREA7

256 256External  
memory space

Address error

Store queue area

Address translation not possible
Cacheable

Address translation not possible
Non-cacheable

Address translation possible
Cacheable

Address translation not possible
Non-cacheable

Cacheable 
Address translation possible

Figure 3.6   Virtual Memory Space (MMUCR.AT == 1)

P0, P3, U0 Areas: The P0 (except 0x7C00 0000-0x7FFF FFFF), P3, and U0 areas allow access
using the cache and address translation using the TLB. These areas can be mapped onto any
external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When the CCR is in the
cache-enabled state and the TLB cacheability  bit (C bit) is 1, accesses can be performed using
the cache. In write accesses to the cache, switching between the copy-back method and the
write-through method is indicated by the TLB write-through bit (WT bit), and is specified in
page units.
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Only when the P0, P3, and U0 areas are mapped onto external memory space by means of the
TLB, addresses 0x1F00 0000 to 0x1FFF FFFF of area 7 in external memory space are allocated
to the control register area. This enables on-chip supporting module control registers to be
accessed from the U0 area in user mode.  In this case, the C bit for the corresponding page must
be cleared to 0.

P1, P2, P4 Areas: Address translation using the TLB cannot be performed for the P1, P2 and P4
areas (except the store queue area). Accesses to these areas are the same as for physical memory
space.  The store queue area can be mapped onto any external memory space by the MMU.
However, operation in the case of an exception differs from that for normal P0, U0, and P3
spaces: see section 4.6, Store Queues, for details.

3.3.4 On-Chip RAM Space

In the SH-4, half (8 kB) of the operand cache (16 kB) can be used as on-chip RAM. This can be
done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), P0 area addresses 0x7C00
0000 to 0x7FFF FC00 1FFF are an on-chip RAM area. Only data accesses
(byte/word/longword/quadword) can be used in this area. In this case, address translation does
not apply to the area from 0x7C00 0000 to 0x7FFF FFFF even if MMUCR.AT is 1.This area can
be used only in RAM-mode(CCR.ORA = 1).

3.3.5 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and
translation to physical addresses is carried out in these page units. The address translation table
in external memory contains the physical addresses corresponding to virtual addresses and
additional information such as memory protection codes. Fast address translation is achieved by
caching the contents of the address translation table located in external memory into the TLB. In
the SH-4, basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In
the event of an access to an area other than the P4 area, the accessed virtual address is translated
to a physical address. If the virtual address belongs to the P1 or P2 area, the physical address is
uniquely determined without accessing the TLB. If the virtual address belongs to the P0, U0, or
P3 area, the TLB is searched using the virtual address, and if the virtual address is recorded in
the TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the
accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception handling routine. In the TLB miss exception
handling routine, the address translation table in external memory is searched, and the
corresponding physical address and page management information are recorded in the TLB.
However, if a TLB miss occurs in the ITLB, a search is carried out by hardware to see if the
address translation information is recorded in the UTLB. If the UTLB contains the
corresponding address translation information, external memory is not searched. This procedure
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is called hardware TLB miss handling. After the return from the exception handling routine, the
instruction which caused the TLB miss exception is re-executed.

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory,
either of which can be selected with the MMUCR.SV bit. In the single virtual memory system, a
number of processes run simultaneously, using virtual memory space on an exclusive basis, and
the physical address corresponding to a particular virtual address is uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple
virtual memory systems in terms of operation is in the TLB address comparison method (see
section 3.4.3).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish
between processes running simultaneously while sharing the virtual address space. Software can
set the ASID of the currently executing process in PTEH in the MMU. The TLB does not have
to be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes
running simultaneously while using the virtual memory space on an exclusive basis.

3.4 TLB Functions

3.4.1 Unified TLB (UTLB) Configuration

The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As a table of address translation information to be recorded in the instruction TLB in the
event of an ITLB miss

Information in the address translation table located in external memory is cached into the UTLB.
The address translation table contains virtual page numbers and address space identifiers, and
corresponding physical page numbers and page management information. Figure 3.7 shows the
overall configuration of the UTLB. The UTLB consists of 64 full-associative type entries. Figure
3.8 shows the relationship between the address format and page size.
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ASID(7-0)Entry 0 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

ASID(7-0)Entry 1 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

ASID(7-0)Entry 2 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

ASID(7-0)Entry 63 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

SA(2-0) TC

SA(2-0) TC

SA(2-0) TC

SA(2-0) TC

Figure 3.7   UTLB Configuration

1-kbyte page
Virtual address Physical address

091031
VPN Offset

091028
PPN Offset

4-kbyte page
Virtual address Physical address

0111231
VPN Offset

0111228
PPN Offset

64-kbyte page
Virtual address Physical address

0151631
VPN Offset

0151628
PPN Offset

1-Mbyte page
Virtual address Physical address

0192031
VPN Offset

0192028
PPN Offset

Figure 3.8   Relationship between Page Size and Address Format

• VPN: Virtual page number

For 1-kbyte page: upper 22 bits of virtual address

For 4-kbyte page: upper 20 bits of virtual address

For 64-kbyte page: upper 16 bits of virtual address

For 1-Mbyte page: upper 12 bits of virtual address

• ASID: Address space identifier

Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the
SH bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.



30

• SH: Share status bit

0: Pages are not shared by processes

1: Pages are shared by processes

• SZ: Page size bits

Specify the page size.

00: 1-kbyte page

01: 4-kbyte page

10: 64-kbyte page

11: 1-Mbyte page

• V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

• PPN: Physical page number

Upper 22 bits of the physical address.

With a 1-kbyte page, PPN (28-10) are valid.

With a 4-kbyte page, PPN (28-12) are valid.

With a 64-kbyte page, PPN (28-16) are valid.

With a 1-Mbyte page, PPN (28-20) are valid.

The synonym problem must be taken into account when setting the PPN. (See section 3.5.5.)

• PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read only, in privileged mode

01: Can be read and written in privileged mode

10: Can be read only, in privileged or user mode

11: Can be read and written in privileged mode or user mode

• C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

• D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed
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• WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

• SA: Space attribute bits

Valid only when the page is mapped onto area 5 or 6 PCMCIA.

000: Undefined

001: Variable-size I/O space ( base size according to IOIS#16 signal)

010: 8-bit I/O space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

• TC: Timing control bit

Used to select the wait control register provided in the bus control unit for areas 5 and 6.

0: Wait control register 0 is used

1: Wait control register 1 is used

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figure
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 full-associative type
entries. The address translation information is almost the same as that in the UTLB, but with the
following differences:

1. D and WT bits are not supported.

2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.
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Figure 3.9   ITLB Configuration
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3.4.3 Address Translation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.
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Figure 3.10   Flowchart of Memory Access Using UTLB
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Instruction access to virtual address (VA)
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Figure 3.11   Flowchart of Memory Access Using ITLB
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3.5 MMU Functions

3.5.1 MMU Hardware Management

The SH-4 supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs address
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status and external memory access status on the basis
of the page management information read during address translation (C, WT, SA, and TC
bits).

3. If address translation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB, and if the necessary address translation information is recorded in
the UTLB, the MMU copies this information into the ITLB in accordance with
MMUCR.LRUI.

3.5.2 MMU Software Management

Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped
UTLB. ITLB entries can only be recorded by writing directly to the memory-mapped ITLB.
For deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed based
on information set by hardware.

3.5.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH-4 copies the contents of PTEH, PTEL and PTEA to the UTLB entry
indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it is
issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in
figure 3.12.
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ASID(7-0)Entry 0 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

ASID(7-0)Entry 1 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT

ASID(7-0)Entry 2 VPN(31-10) V PPN(28-10) SZ(1-0) SH C PR(1-0) D WT
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Figure 3.12   Operation of LDTLB Instruction

3.5.4 Hardware ITLB Miss Handling

In an instruction access, the SH-4 searches the ITLB. If it cannot find the necessary address
translation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware,
and if the necessary address translation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address translation
information is not found in the UTLB search, an instruction TLB miss exception is generated
and processing passes to software.

3.5.5 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical address,
the same physical address data is recorded in a number of cache entries, and it becomes
impossible to guarantee data integrity. This problem does not occur with the instruction TLB or
instruction cache . In the SH-4, entry specification is performed using (13–5) of the virtual
address in order to achieve fast operand cache operation. However, (13–10) of the virtual
address in the case of a 1-kbyte page, and (13–12) of the virtual address in the case of a 4-kbyte
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page, are subject to address translation. As a result, (13–10) of the physical address after
translation may differ from (13–10) of the virtual address.

Consequently, the following restrictions apply to the recording of address translation information
in UTLB entries.

1. When address translation information whereby a number of 1-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN (13–
10) values are the same.

2. When address translation information whereby a number of 4-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN (13–
12) values are the same.

3. Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

4. Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different
page size.

The above restrictions apply only when performing accesses using the cache.  When cache index
mode is used (CCR.OIX==1), VPN(25) is used instead of VPN(13) above, and therefore the
restrictions described above apply to VPN(25).

Note: To provide for future SH Series expansion, when multiple items of address translation
information use the same physical memory, ensure that the VPN (20–10) values are the
same. Also, do not use the same physical address for address translation information of
different page sizes.

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception,
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these
exceptions occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, a data TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency
is not guaranteed.
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Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The ITLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in
program debugging, and should not normally be generated.

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB miss
exception.

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out
the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the instruction TLB miss exception handling routine.
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Software Processing (Instruction TLB Miss Exception Handling Routine): Software is
responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the
necessary page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table, and write to PTEA the
values of the SA and TC if necessary.

2. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL and PTEA to the
TLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued after the LDTLB instruction.

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR
bit. The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the instruction TLB protection violation exception handling routine.
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Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return
instruction (RTE), terminate the exception handling routine, and return control to the normal
flow. The RTE instruction should be issued after the LDTLB instruction.

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made. A data TLB multiple hit exception is also
generated if multiple hits occur when the UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be lost.

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out
the following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in
program debugging, and should not normally be generated.

3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address
to which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in
EXPEVT(OCBP, OCBWB : read ; OCBI, MOVCA.L : write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.
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7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TLB miss exception handling routine.

Software Processing (Data TLB Miss Exception Handling Routine)

Software is responsible for searching the external memory page table and assigning the
necessary page table entry. Software should carry out the following processing in order to find
and assign the necessary page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table, and write to PTEA the
values of the SA and TC if necessary.

2. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL and PTEA to the
UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made, the
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardware Processing

In the event of a data TLB protection violation exception, hardware carries out the following
processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in the case of a read, or H'0C0 in the case of a write, in
EXPEVT(OCBP, OCBWB : read ; OCBI, MOVCA.L : write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.
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6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TLB protection violation exception handling routine.

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued after the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'080 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the initial page write exception handling routine.
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Software Processing (Initial Page Write Exception Handling Routine): The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.

2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in external memory, and write to PTEA the values of the SA and TC if
necessary.

4. When the entry to be replaced in entry replacement is specified by software, write that value
to URC in the MMUCR register. If URC is greater than URB at this time, the value should
be changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be
issued after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and
written by a P2 area program using a MOV instruction in privileged mode. Operation is not
guaranteed if access is made from a program in another area. In this case, the branch instruction
to P0/U0/P1/P3 area should be issued at least 8-instructions after this MOV instruction. The
ITLB and UTLB are allocated to the P4 area in physical memory space. VPN, V, and ASID in
the ITLB can be accessed as an address array, PPN, V, SZ, PR, C, and SH as a data array1, and
SA, TC as a data array2. VPN, V, D, and ASID in the UTLB can be accessed as an address
array, and PPN, V, SZ, PR, C, D, WT, and SH as a data array1, and SA, TC as a data array2. V
and D can be accessed from both the address array side and the data array1 side. Only longword
access is possible. Instruction fetches cannot be performed in these areas. Reserved bits should
be written with 0, and treated as don’t care bits in a read.

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area.
An address array access requires a 32-bit address field specification (when reading or writing)
and a 32-bit data field specification (when writing). Information for selecting the entry to be
accessed is specified in the address field, and VPN, V, and ASID to be written to the address
array are specified in the data field.

In the address field, (31–24) have the value H'F2 indicating the ITLB address array, and the
entry is selected by (9–8). As longword access is used, 0 should be specified for address field (1–
0). The other bits are don’t care bits.
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In the data field, VPN is indicated by (31–10), V by (8), and ASID by (7–0). (9) is a don’t care
bit.

The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the
entry set in the address field.

2. ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to
the entry set in the address field.

Address field

Data field

VPN : Virtual page number
V : Validity bit
E : Entry

ASID : Address space identifier

: Reserved bit

31

1 1 1 1 0 0 1 0

24 23 078

31 078910

VPN ASIDV

910

E

Figure 3.13   Memory-Mapped ITLB Address Array

3.7.2 ITLB Data Array 1

The ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A
data array access requires a 32-bit address field specification (when reading or writing) and a 32-
bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array 1
are specified in the data field.

In the address field, (31–23) have the value H'F30 indicating the ITLB data array 1, and the
entry is selected by (9–8).

In the data field, PPN is indicated by (28–10), V by (8), SZ by (7) (4), PR by (6), C by (3), and
SH by (1).

The following two kinds of operation can be used on  ITLB data array 1:

1. ITLB data array 1 read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to
the entry set in the address field.

2. ITLB data array 1 write
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PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

Address field

Data field

PPN : Physical page number
V : Validity bit
E : Entry

SZ : Page size bits : Reserved bit

SZPR SHPR : Protection key data
C : Cacheability bit

SH : Share status bit

31 24 23 07

31 078910

PPN V

3029 28

C

123456

8

1 1 1 1 0 0 1 1 0

910

E

Figure 3.14   Memory-Mapped ITLB Data Array 1

3.7.3 ITLB Data Array 2

The ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A
data array access requires a 32-bit address field specification (when reading or writing) and a 32-
bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to the data array 2 are specified in the
data field.

In the address field, (31-23) have the value H’F38 indicating ITLB data array 2, and the entry is
selected by (9-8).

In the data field, SA is indicated by (2-0) and TC by (3).

The following two kinds of operation can be used on ITLB data array 2:

1. ITLB data array 20 read

SA and TC are read into the data field from the ITLB entry corresponding to the entry set in
the data field.

2. ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry corresponding to the
entry set in the address field.
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Address field

Data field

TC : Timing Control bit

: Reserved bit

SA : Space attribution bits

E : Entry

31 24 23 07

31 0

SA

234

8910

TC

1 1 1 1 0 0 1 1 E1

Figure 3.15   Memory-Mapped ITLB Data Array 2

3.7.4 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 area.
An address array access requires a 32-bit address field specification (when reading or writing)
and a 32-bit data field specification (when writing). Information for selecting the entry to be
accessed is specified in the address field, and VPN, D, V, and ASID to be written to address
array are specified in the data field.

In the address field, (31–24) have the value H'F6 indicating the UTLB address array, and the
entry is selected by (13–8). The address array (7) association bit (A bit) specifies whether or not
address comparison is performed when writing to the UTLB address array.

In the data field, VPN is indicated by (31–10), D by (9), V by (8), and ASID by (7–0).

The following three kinds of operation can be used on the UTLB address array:

1. UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed, regardless of
whether the association bit specified in the address field is 1 or 0.

2. UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field. The A bit in the address field should be
cleared to 0.
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3. UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and PTEH.ASID. The
usual address comparison rules are followed, but the occurrence of a TLB miss exception
results in no operation. If the comparison identifies a UTLB entry corresponding to the VPN
specified in the data field, D and V specified in the data field are written to that entry. If
there is more than one matching entry, a data TLB multiple hit exception results. This
associative operation is simultaneously carried out on the ITLB, and if a matching entry is
found in the ITLB, V is written to that entry. Even if the UTLB comparison results in no
operation, a write to the ITLB side only is performed as long as there is an ITLB match. If
there is a match in both the UTLB and ITLB, the UTLB information is also written to the
ITLB.

Address field

Data field

31

1 1 1 1 0 1 1 0

24 23 07813

E

31 078910

VPN ASIDVD

VPN : Virtual page number
V : Validity bit
E : Entry

ASID : Address space identifier

: Reserved bit

14

A

A : Association bit

D : Dirty bit

Figure 3.16   Memory-Mapped UTLB Address Array

3.7.5 UTLB Data Array 1

The UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A
data array access requires a 32-bit address field specification (when reading or writing) and a 32-
bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the data
array 1 are specified in the data field.

In the address field, (31–23) have the value H'F70 indicating UTLB data array 1, and the entry is
selected by (13–8).

In the data field, PPN is indicated by (28–10), V by (8), SZ by (7) (4), PR by (6–5), C by (3), D
by (2), SH by (1), and WT by (0).

The following two kinds of operation can be used on UTLB data array 1:
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1. UTLB data array 1 read

PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array 1 write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field.

Address field

Data field

31 24 23 07

31 078910

PPN V

PPN: Physical page number
V : Validity bit
E: Entry

SZ: Page size bits WT: Write-through bit

3029 28

C D

SZ

PR

SHPR: Protection key data
C: Cacheability bit

SH: Share status bit

123456

81314

WT

D : Dirty bit : Reserved bit

1 1 1 1 0 1 1 1 E0

Figure 3.17   Memory-Mapped UTLB Data Array 1

3.7.6 UTLB Data Array 2

The UTLB data array 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A
data array access requires a 32-bit address field specification (when reading or writing) and a 32-
bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to the data array 2 are specified in the
data field.

In the address field, (31–23) have the value H'F78 indicating UTLB data array 2, and the entry is
selected by (13–8).

In the data field, TC is indicated by (3),  and SA by (2-0). The other bits are don’t care bits.

The following two kinds of operation can be used on UTLB data array 2:
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1. UTLB data array 2 read

SA and TC  are read into the data field from the UTLB entry corresponding to the entry set
in the address field.

2. UTLB data array 2 write

SA and TC specified in the data field are written to the UTLB entry corresponding to the
entry set in the address field.

Address field

Data field

31 24 23 07

31 0

SA

234

81314

TCTC : Timing Control bit

: Reserved bit

SA : Space attribution bits

E : Entry

1 1 1 1 0 1 1 1 E1

Figure 3.18   Memory Mapped UTLB Data Array 2
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Section 4   Caches

4.1 Overview

4.1.1 Features

The SH-4 has an on-chip 8-kbyte instruction cache for instructions and 16-kbyte operand cache
for data. Half of the memory of the operand cache (8 kbytes) can also be used as on-chip RAM.
Two 32-byte store queues (SQs) are also provided for storing data in high-speed external
memory. The features of the caches and store queues are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache +
8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method Copy-back/write-through selectable

Item Store Queues

Capacity 2 x 32 bytes Addresses 0xE0000000-0xE3FFFFFF

Write Store instruction (1-cycle
write)

Write-back Prefetch instruction

Access right MMU off : according to MMUCR.SQMD.

MMU on : according to individual page PR.
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4.1.2 Register Configuration

Table 4.2 summarizes the specifications of the cache control register.

Table 4.2 Cache Control Register

Name Abbreviation R/W Size Initial Value *1 Address *2

Cache control register CCR R/W Longword 0x00000000 0xFF00001C

Queue address control
register 0

QACR0 R/W Longword Undefined 0xFF000038

Queue address control
register 1

QACR1 R/W Longword Undefined 0xFF00003C

Note: *1  The initial value is the value after a power-on or manual reset.
*2  This is the address when using the virtual/physical address space P4 area.  When

making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related registers.

CCR

0831 14 9101112 7 6 5 4 3 2 1

CB

ICI ICE ORA OCI WT OCE

1516

IIX OIX
QACR0

031 5 4 2 1

AREA

QACR1

031 5 4 2 1

AREA

is the reserved bit,  so the written data must be 0, and the read data is 
undefined.

Figure 4.1   Cache Control Register
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(1) Cache Control Register (CCR)

IIX: IC index enable
ICI: IC invalidation
ICE: IC enable

OIX: OC index enable
ORA: OC RAM enable
OCI: OC invalidation
CB: Copy-back enable
WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H’FF00001C in the P4 area and H’1F00001C
in area 7.  The CCR bits are used for the cache settings described below.  Consequently, CCR
modifications must only be made by a program in the non-cached P2 area.

• IIX : IC index mode bit

0:  Address(12:5) used as IC index

1:  Address (25)(11:5) used as IC index

• ICI: IC invalidation bit. When 1 is written to this bit, the V bits of all IC entries are cleared
to 0. This bit always returns 0 when read.

• ICE: IC enable bit. Indicates whether or not the IC is to be used. When address translation is
performed, the IC cannot be used unless the C bit in the page management information is
also 1.

0:  IC not used

1:  IC used

• OIX: OC index mode bit

0:  Address (13:5) used as OC index

1:  Address (25)(12:5) used as OC index

• ORA: OC RAM enable bit. When the OC (operand cache) is enabled (OCE == 1), the ORA
bit specifies whether the 8 kbytes from entry 128 to entry 255 and from entry 384 to entry
511 out of the OC’s 16 kbytes are to be used as RAM. When the OC is not enabled (OCE ==
0), the ORA bit should also be 0.

0:  16 kbytes used as cache

1:  8 kbytes used as cache, and 8 kbytes as RAM

• OCI: OC invalidation bit. When 1 is written to this bit, the V and U bits of all OC entries are
 cleared to 0. This bit always returns 0 when read.

• CB: Copy-back enable bit. Indicates the write mode for the P1 area cache.

0:  Write-through mode

1:  Copy-back mode
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• WT: Write-through enable bit. Indicates the write mode for the P0, U0, and P3 area cache.
 When address translation is performed, the value of the WT bit in the page management
 information has priority.

0:  Copy-back mode

1:  Write-through mode

• OCE: OC enable bit. Indicates whether or not the OC is to be used. When address translation
 is performed, the OC cannot be used unless the C bit in the page management
 information is also 1.

0:  OC not used

1:  OC used

(2) Queue Address Control Register 0 (QACR0)

Longword access to QACR0 can be performed from H’FF000038 in the P4 area and
H’1F000038 in area 7.  QACR0 specifies the area onto which store queue 0 (SQ0) is mapped
when the MMU is off.

(3) Queue Address Control Register 1 (QACR1)

Longword access to QACR1 can be performed from H’FF00003C in the P4 area and
H’1F00003C in area 7.  QACR1 specifies the area onto which store queue 1 (SQ1) is mapped
when the MMU is off.
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4.3 Operand Cache (OC)

4.3.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

Effective address

VUTag address LW00

511

31

Address array Data array

MMU

Longword(LW) selection

Hit signal

Read data Write data

19bit 1bit1bit 32bit

22 9 3

Compare

19

LW1

32bit

LW2

32bit

LW3

32bit 32bit

LW5

32bit

LW6

32bit

LW7

32bit

LW4

2625 1312 1110 9 5 4 3 2 1 0

RAM ?

OIX ORA
[13] [12]

[11:5]

E
nt

ry
 s

el
ec

tio
n

Figure 4.2   Configuration of Operand Cache

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and
32-byte data.
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• Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.

• V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing memory-mapped cache (see section 4.5).
The U bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not
initialized by a power-on or manual reset.

4.3.2 Read Operation

When the OC is enabled (CCR.OCE == 1) and data is read by means of an effective address
from a cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits (13–
5).

2. The tag is compared with bits (31–10) of the address resulting from effective address
translation by the MMU:

a. If the tag matches and the V bit is 1∅ 3a

b. If the tag matches and the V bit is 0∅ 3b

c. If the tag does not match and the V bit is 0∅ 3b

d. If the tag does not match, the V bit is 1, and the U bit is 0 ∅ 3b

e. If the tag does not match, the V bit is 1, and the U bit is 1∅ 3c

3a. Cache hit

The data indexed by effective address bits (4–0) is read from the data field of the cache line
indexed by effective address bits (13–5) in accordance with the access size
(quadword/longword/word/byte).

3b. Cache miss (no write-back)

Data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and when the corresponding data
arrives in the cache, the read data is returned to the CPU. While the remaining one cache line
of data is being read, the CPU can execute the next processing. The tag corresponding to the
effective address is recorded in the cache, and 1 is written to the V bit.
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3c. Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits (13–5) are saved in
the write-back buffer. Then data is read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and when
the corresponding data arrives in the cache, the read data is returned to the CPU. While the
remaining one cache line of data is being read, the CPU can execute the next processing. The
tag corresponding to the effective address is recorded in the cache, 1 is written to the V bit,
and 0 to the U bit. The data in the write-back buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE == 1) and data is written by means of an effective address
to a cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits (13–
5).

2. The tag is compared with bits (31–10) of the address resulting from effective address
translation by the MMU:

Copy-back Write-through

a. If the tag matches and the V bit is 1 ∅ 3a ∅ 3b

b. If the tag matches and the V bit is 0 ∅ 3c ∅ 3d

c. If the tag does not match and the V bit is 0 ∅ 3c ∅ 3d

d. If the tag does not match, the V bit is 1, and the U bit is 0 ∅ 3c ∅ 3d

e. If the tag does not match, the V bit is 1, and the U bit is 1∅ 3e ∅ 3d

3a. Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits (4–0) of the effective address of the data field of the cache line
indexed by effective address bits (13–5). Then 1 is set in the U bit.

3b. Cache hit (write-through)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits (4-0) of the effective address of the data field of the cache line
indexed by effective address bits (13-5).  A write is also performed to the corresponding
external memory using the specified access size.
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3c. Cache miss (copy-back, no write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits (4–0) of the effective address of the data field of the cache line
indexed by effective address bits (13–5). Then, data is read into the cache line from the
external memory space corresponding to the effective address. Data reading is performed,
using the wraparound method, in order from the longword data corresponding to the effective
address, and one cache line of data is read excluding the written data. During this time, the
CPU can execute the next processing. The tag corresponding to the effective address is
recorded in the cache, and 1 is written to the V bit and U bit.

3d. Cache miss (write-through)

A write of the specified access size is not performed to the external memory corresponding
to the effective address.  In this case, a write to cache is not performed.

3e. Cache miss (copy-back, with write-back)

The tag and data field of the cache line indexed by effective address bits (13–5) are first
saved in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits (4–0) of the
effective address of the data field of the cache line indexed by effective address bits (13–5).
Then, data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and one cache line of data is read
excluding the written data. During this time, the CPU can execute the next processing. The
tag corresponding to the effective address is recorded in the cache, and 1 is written to the V
bit and U bit. The data in the write-back buffer is then written back to external memory.

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4 has a
write-back buffer which holds the relevant cache entry when it becomes necessary to purge a
dirty cache entry into external memory as the result of a cache miss. The write-back buffer
contains one cache line of data and the physical address of the purge destination.

LW7Physical address (28–5) LW6LW5LW4LW3LW2LW1LW0

Figure 4.3   Configuration of Write-Back Buffer
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4.3.5 Write-Through Buffer

The SH-4 has a 64-bit buffer for holding write data when writing data in write-through mode or
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon as
the write to the write-through buffer is completed, without waiting for completion of the write to
external memory.

Physical address (28–0) LW1LW0

Figure 4.4   Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand
cache entries used as RAM are entries 128 to 255 and 384284  to 511. Other entries can still be
used as cache. RAM can be accessed using addresses 0x7C00 0000 to 0x7FFF FC00 1FFF.
Addresses 0x7C00 2000 to 0x7FFF FFFF are a reserved area. Byte-, word-, longword-, and
quadword-size data reads and writes can be performed in the operand cache RAM area.
Instruction fetches cannot be performed in this area.  When RAM mode is specified, address
translation does not apply to this area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using (25) of the Effective address.
This is called OC index mode.  In normal mode, with CCR.OIX cleared to 0, OC indexing is
performed using (13:5) of the effective address; therefore, when 16 kbytes or more of
consecutive data is handled, the OC is fully used by this data.  This results in frequent cache
misses.  Using index mode allows the OC to be handled as two 8-kbyte areas by means of
effective address (25), providing efficient use of the cache.
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4.3.8 Coherency between Cache and External Memory

Coherency between cache and memory should be assured by software. In the SH-4, the
following four new instructions are supported for cache operations. Details of these instructions
are given in the Programming Manual.

• Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)

• Purge instruction: OCBP @Rn Cache invalidation (with write-back)

• Write-back instruction: OCBWB @Rn Cache write-back

• Allocate instruction: MOVCA.L R0,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH-4 supports a prefetch instruction to reduce the cache fill penalty incurred as the result of
a cache miss. If it is known that a cache miss will result from a read or write operation, it is
possible to fill the cache with data beforehand by means of the prefetch instruction to prevent a
cache miss due to the read or write operation, and so improve software performance. If a
prefetch instruction is executed for data already held in the cache, or if an MMU exception
occurs at the intended prefetch address, the result is no operation, and an exception is not
generated. Details of the prefetch instruction are given in the Programming Manual.

• Prefetch instruction:  PREF @Rn
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4.4 Instruction Cache (IC)

4.4.1 Configuration

Figure 4.5 shows the configuration of the instruction cache.
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0

255

31

Address array Data array

MMU

Longword(LW)selection

Hit signal

Read data

22 8 3

Compare

19

2625 1312 1110 9 5 4 3 2 1 0

IIX
[12]

[11:5]

E
nt

ry
 s

el
ec

tio
n UTag address LW0

19bit 1bit 32bit

LW1

32bit

LW2

32bit

LW3

32bit 32bit

LW5

32bit

LW6

32bit

LW7

32bit

LW4

Figure 4.5   Configuration of Instruction cache
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• The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, U bit,
and 32-kbyte data (16 instructions).

• Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.

• V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not
initialized by a power-on or manual reset.

4.4.2 Read Operation

When the IC is enabled (CCR.ICE == 1) and instruction fetches are performed by means of an
effective address from a cacheable area, the instruction cache operates as follows:

1. The tag and V bit are read from the cache line indexed by effective address bits (12–5).

2. The tag is compared with bits (28–10) of the address resulting from effective address
translation by the MMU:

a. If the tag matches and the V bit is 1∅ 3a

b. If the tag matches and the V bit is 0∅ 3b

c. If the tag does not match and the V bit is 0∅ 3b

d. If the tag does not match and the V bit is 1∅ 3b

3a. Cache hit

The data indexed by effective address bits (4–2) is read as an instruction from the data field
of the cache line indexed by effective address bits (12–5).

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the
longword data corresponding to the effective address, and when the corresponding data
arrives in the cache, the read data is returned to the CPU as an instruction. While the
remaining one cache line of data is being read, the CPU can execute the next processing. The
tag corresponding to the effective address is recorded in the cache, and 1 is written to the V
bit.



61

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using (25) of the effective address.
This is called IC index mode.  In normal mode, with CCR.IIX cleared to 0, IC indexing is
performed using (12:5) of the effective address; therefore, when of 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program.  This results
in frequent cache misses.  Using index mode allows the IC to be handled as two 4-kbyte areas by
means of effective address (25),  providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

To enable the IC and OC to be managed by software, their contents can be read and written by a
P2 area program using a MOV instruction in privileged mode. Operation is not guaranteed if
access is made from a program in another area. In this case, the branch instruction to
P0/U0/P1/P3 areas should be issued at least 8-instructions after this MOV instruction.  The IC
and OC are allocated to the P4 area in physical memory space. Only data accesses can be used
on both the IC address array and data array and the OC address array and data array, and
accesses are always longword-size. Instruction fetches cannot be performed in these areas.
Reserved bits should be written with 0, and treated as don’t care bits in a read.

4.5.1 IC Address Array

The IC address array is allocated to addresses 0xF000 0000 to 0xF0FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag and V bit are specified in the data field.

In the address field, (31–24) have the value 0xF0 indicating the IC address array, and the entry is
specified by (12–5). CCR.IIX has no effect to the entry. The address array (3) association bit (A
bit) specifies whether or not association is performed when writing to the IC address array. As
only longword access is used, 0 should be specified for address field (1–0).

In the data field, the tag is indicated by (31–10), and the V bit by (0). As the IC address array tag
is 19 bits in length, data field (31–29) are not used in the case of a write in which association is
not performed. Data field (31–29) are used for the virtual address specification only in the case
of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:
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1. IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry set
in the address field. In a read, associative operation is not performed, regardless of whether
the association bit specified in the address field is 1 or 0.

2. IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the
entry set in the address field. The A bit in the address field should be cleared to 0.

3. IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field (31–10) has been translated to a physical address using the ITLB. If the addresses
match and the V bit is 1, the V bit specified in the data field is written into the IC entry. This
operation is used to invalidate a specific IC entry. If an instruction TLB miss exception
occurs during address translation, or the comparison shows a mismatch, no operation results
and the write is not performed. If an instruction TLB multiple hit exception occurs during
address translation, processing switches to the TLB multiple hit exception handling routine.

Address field

Data field

31

1 1 1 1 0 0 0 0

24 23 03412
Entry

31 0910
Tag address V

V : Validity bit
: Reserved bit

1213

A

A : Association bit

5

1

Figure 4.6   Memory-Mapped IC Address Array

4.5.2 IC Data Array

The IC data array is allocated to addresses 0xF100 0000 to 0xF1FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the
longword data to be written is specified in the data field.

In the address field, (31–24) have the value 0xF1 indicating the IC data array, and the entry is
specified by (12–5). CCR.IIX has no effect to the entry. Address field (4–2) are used for the
longword data specification in the entry. As only longword access is used, 0 should be specified
for address field (1–0).

The data field is used for the longword data specification.
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The following two kinds of operation can be used on the IC data array:

1. IC data array read

Longword data is read into the data field from the data specified by the longword
specification bits in the address field in the entry corresponding to the entry set in the address
field.

2. IC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the entry corresponding to the entry set in the address
field.

Address field

Data field

31

1 1 1 1 0 0 0 1

24 23 0412

Entry

31 0

Longword data

L Longword specification bits

1213 5

L

: Reserved bit

Figure 4.7   Memory-Mapped IC Data Array

4.5.3 OC Address Array

The OC address array is allocated to addresses 0xF400 0000 to 0xF4FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag, U bit, and V bit are specified in the data field.

In the address field, (31–24) have the value 0xF4 indicating the OC address array, and the entry
is specified by (13–5). CCR.OIX and CCR.ORA has no effect to the entry. The address array (3)
association bit (A bit) specifies whether or not association is performed when writing to the OC
address array. As only longword access is used, 0 should be specified for address field (1–0).

In the data field, the tag is indicated by (31–10), the U bit by (1), and the V bit by (0). As the OC
address array tag is 19 bits in length, data field (31–29) are not used in the case of a write in
which association is not performed. Data field (31–29) are used for the virtual address
specification only in the case of a write in which association is performed.

The following three kinds of operation can be used on the OC address array:
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1. OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the
entry set in the address field. In a read, associative operation is not performed, regardless of
whether the association bit specified in the address field is 1 or 0.

2. OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding
to the entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after
write-back of that cache line, the tag, U bit, and V bit specified in the data field are written.

3. OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field (31–10) has been translated to a physical address using the UTLB. If the addresses
match and the V bit is 1, the U bit and V bit specified in the data field are written into the
OC entry. This operation is used to invalidate a specific OC entry. If the OC entry U bit is 1,
and 0 is written to the V bit or to the U bit, write-back is performed. If a data TLB miss
exception occurs during address translation, or the comparison shows a mismatch, no
operation results and the write is not performed. If a data TLB multiple hit exception occurs
during address translation, processing switches to the TLB multiple hit exception handling
routine.

Address field

Data field

31

1 1 1 1 0 1 0 0

24 23 03413
Entry

31 0910

Tag address V

V : Validity bit

1214

A

A : Association bit

5

1

U

2

U : Dirty bit: Reserved bit

Figure 4.8   Memory-Mapped OC Address Array
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4.5.4 OC Data Array

The OC data array is allocated to addresses 0xF500 0000 to 0xF5FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the
longword data to be written is specified in the data field.

In the address field, (31–24) have the value 0xF5 indicating the OC data array, and the entry is
specified by (13–5).  CCR.OIX and CCR.ORA has no effect to the entry. Address field (4–2) are
used for the longword data specification in the entry. As only longword access is used, 0 should
be specified for address field (1–0). The other bits are don’t care bits.

The data field is used for the longword data specification.

The following two kinds of operation can be used on the OC data array:

1. OC data array read

Longword data is read into the data field from the data specified by the longword
specification bits in the address field in the entry corresponding to the entry set in the address
field.

2. OC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the entry corresponding to the entry set in the address
field. This write does not set the U bit to 1 on the address array side.

Address field
31 23 5 4 2 1 0

1 1 1 1 0 1 0 1 Entry L 0 0*

Data field
31 0

Longword data

24 13

*
14

L:

*:
Longword specification bits
Don’t care bit

Figure 4.9   Memory-Mapped OC Data Array
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4.6 Store Queue

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ 1, as shown in figure 4.10.  These two store
queues can be set independently.

SQ0

SQ1

SQ0[0] SQ0[1] SQ0[2] SQ0[3] SQ0[4] SQ0[5] SQ0[6] SQ0[7]

SQ1[0] SQ1[1] SQ1[2] SQ1[3] SQ1[4] SQ1[5] SQ1[6] SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure 4.10 Store Queue Configuration

4.6.2 SQ Write

A write to the SQs can be performed using a store instruction (MOV) on P4 area 0xE0000000 to
0xE3FFFFFC,  A longword or quadword access size can be used.  The meaning of the address
bits is as follows:

(31:26): 111000 Store queue specification

(25:6): Don’t care Used for external memory transfer/access right

(5):; 0/1 0: SQ0 specification  1: SQ1 specification

(4:2): LW specification Specifies longword position in SQ0/1

(1:0): 00 Fixed at 0

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for P4 area 0xE000000 to 0xE3FF FFFC starts a burst transfer from
the SQs to external memory.  The burst transfer length is fixed at 32 bytes, and the start address
is always at a 32-byte boundary.  While the contents of one SQ are being transferred to external
memory, the other SQ can be written to without a penalty cycle, but writing to the SQ involved
in the transfer to external memory is deferred until the transfer is completed.

The SQ transfer destination external memory address (28:0) specification is as shown below,
according to whether the MMU is on or off.



67

(1) MMU on

The SQ area (0xE0000000 to 0xE3FFFFFF) is set in VPN of the UTLB, and the transfer
destination external memory address in PPN.  As area 7 is a reserved area, setting area 7 in
PPN is prohibited. The ASID, V, SZ, SH, PR, and D bits have the same meaning as for
normal address translation, but the C and WT bits have no meaning with regard to this page.
Since burst transfer is prohibited for PCMCIA areas, the SA and TC bits also have no
meaning.

When a prefetch instruction is issued for the SQ area, address translation is performed and
external memory address bits (28:10) are generated in accordance with the SZ bit
specification.  For external memory address (9:5), the address prior to address translation is
generated in the same way as the MMU is off.  External memory address bits (4:0) are fixed
at 0.  Transfer from the SQs to external memory is performed to this address.

(2) MMU off

The SQ area (0xE0000000 to 0xE3FFFFFF) is set as the address at which a prefetch is
performed.  The meaning of address bits (31:0) is as follows:

(31:26): 111000 Store queue specification

(25:6): Address External memory address (25:6)

(5):; 0/1 0: SQ0 specification  1: SQ1 specification and
external memory address (5)

(4:2): Don’t care No meaning in a prefetch

(1:0): 00 Fixed at 0

External memory address bits (28:26), which cannot be generated from the above address,
are generated from the QACR0/1 registers.

QACR0(4:2): External memory address (28:26) corresponding to SQ0

QACR1(4:2): External memory address (28:26) corresponding to SQ1

External memory address bits (4:0) are always fixed at 0 since burst transfer starts at a 32-
byte boundary.

4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory.  If an SQ
write violates the protection setting, an exception will be generated but the SQ contents will be
corrupted.  If a transfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.
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(1) When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB
and MMUCR.SQMD.  Write type exception judgment is  performed for writes to the SQs,
and read type for transfer from the SQs to external memory (PREF instruction), and a TLB
miss exception, protection violation exception, or initial page write exception is generated.
However, if SQ access is enabled, in privileged mode only, by MMUCR. SQMD, an address
error will be flagged in user mode even if address translation is successful.

(2) When MMU is off

Operation is in accordance with MMUCR.SQMD.

0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error
will be flagged.
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Section 5   Exceptions

5.1 Overview

5.1.1 Features

Exception handling is the process handled by a special routine, separate from normal program
processing, that is executed by the CPU in case of abnormal events. For example, if the
executing instruction ends abnormally, appropriate action must be taken in order to return to the
original program sequence, or report the abnormality before terminating the process. The
process of generating an exception handling request in response to abnormal termination, and
passing control to a user-written exception handling routine, in order to support such functions is
given the generic name of exception handling.

SH4 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Control Registers

Table 5.1 shows memory-mapped control registers used in exception handling.

Table 5.1 Exception-Related Control Registers

Initial Value after Reset
Value In Power-

Down Mode

Name Address Size Power-On Manual Sleep Standby

TRA H'FF00 0020 H'1F00 0020 32 Undefined Undefined Retained Retained

EXPEVT H'FF00 0024 H'1F00 0024 32 H'0000 0000 H'0000 0020 Retained Retained

INTEVT H'FF00 0028 H'1F00 0028 32 Undefined Undefined Retained Retained

• EXPEVT

31 12 11 0

Reserved Exception code

Reserved: Always read as zero. Zero should be specified when writing.

When a reset or general exception occurs, an exception code that identifies the exception is
stored in EXPEVT.
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• INTEVT

31 12 11 0

Reserved Interrupt code

Reserved: Always read as zero. Zero should be specified when writing.

When an interrupt occurs, an exception code that identifies the interrupt is stored in
INTEVT.

• TRA

31 10 9 2 0

Reserved # Immediate data 00

Reserved: Always read as zero. Zero should be specified when writing.

When an unconditional trap (TRAPA instruction) is executed, the 8-bit immediate data in the
TRAP instruction code is stored in TRA.

5.2 Exception Handling Functions

5.2.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SR) are
saved in the saved program counter (SPC) and saved status register (SSR), and the CPU starts
execution of the appropriate exception handling routine according to the vector address. An
exception handling routine is a program written to handle a specific exception. The exception
handling routine is terminated and control returned to the original program by executing a return
from exception instruction (RTE). This instruction restores the PC and SR contents and returns
control to the normal processing routine at the point at which the exception occurred.

The basic processing flow is as follows. See section 2 for the meaning of the individual SR bits.

1. The PC and SR contents are saved in the SPC and SSR.

2. The block bit (BL) in SR is set to 1.

3. The mode bit (MD) in SR is set to 1.

4. The register bank bit (RB) in SR is set to 1.

5. In case of reset , the FPU disable bit (FD) in SR is cleared to 0.

6. The exception code is written to bits 11–0 of the exception event register (EXPEVT) or
interrupt event register (INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.
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5.2.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In case of the TLB miss exception, for example, the
offset is H'0000 0400, so if H'9C08 0000 is set in VBR, the exception handling vector address
will be H'9C08 0400. If a further exception occurs at the exception handling vector address, a
duplicate exception will result, and recovery will be difficult; therefore, fixed physical addresses
(P1, P2) should be specified for vector addresses.
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5.3 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.2 Exception Types and Priorities

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order Vector Base Offset

Exceptio
n Code

Reset Abort type Power-on reset 1 1 H'A000 0000 — H'000

Manual reset 1 2 H'A000 0000 — H'020

Hitachi-UDI reset 1 1 H'A0000000 — H'000

Instruction TLB multiple-hit
exception

1 3 H'A000 0000 — H'140

Data TLB multiple-hit
exception

1 4 H'A000 0000 — H'140

General
exception

Re-
execution
type

User break before
instruction execution

2 0 VBR/DBR H'100/— H'1E0

Instruction address error 2 1 VBR H'100 H'0E0

Instruction TLB miss
exception

2 2 VBR H'400 H'040

Instruction TLB protection
violation exception

2 3 VBR H'100 H'0A0

General illegal instruction
exception

2 4 VBR H'100 H'180

Slot illegal instruction
exception

2 4 VBR H'100 H'1A0

General FPU disable
exception

2 4 VBR H'100 H'800

Slot FPU disable exception 2 4 VBR H'100 H'820

Data address error (read) 2 5 VBR H'100 H'0E0

Data address error (write) 2 5 VBR H'100 H'100

Data TLB miss exception
(read)

2 6 VBR H'400 H'040

Data TLB miss exception
(write)

2 6 VBR H'400 H'060

Data TLB protection
violation exception (read)

2 7 VBR H'100 H'0A0

Data TLB protection
violation exception (write)

2 7 VBR H'100 H'0C0

FPU exception 2 8 VBR H'100 H'120

Initial page write exception 2 9 VBR H'100 H'080

Completion
type

Unconditional trap (TRAPA) 2 4 VBR H'100 H'160

User break after instruction
execution

2 10 VBR/DBR H'100/— H'1E0
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Table 5.2 Exception Types and Priorities (cont)

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order

Vector
Address Offset

Exception
Code

Interrupt Completio
n type

Nonmaskable interrupt 3 — (VBR) H'600 H'1C0

External
interrupt

IRL3/2/
1/0

0 4 *2 (VBR) H'600 H'200

1 H'220

2 H'240

3 H'260

4 H'280

5 H'2A0

6 H'2C0

7 H'2E0

8 H'300

9 H'320

A H'340

B H'360

C H'380

D H'3A0

E H'3C0
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Table 5.2 Exception Types and Priorities (cont)

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order

Vector
Address Offset

Exception
Code

Interrupt Completion
type

Supporting
module
interrupt
(module/
source)

TMU0 TUNI0 4 *2 (VBR) H'600 H'400

TMU1 TUNI1 H'420

TMU2 TUNI2 H'440

TICPI2 H'460

RTC ATI H'480

PRI H'4A0

CUI H'4C0

SCI ERI H'4E0

RXI H'500

TXI H'520

TEI H'540

WDT ITI H'560

REF RCMI H'580

ROVI H'5A0

Hitachi-
UDI

Hitachi-
UDI

H'600

port GPIO H’620

DMAC DMTE0 H'640

DMTE1 H'660

DMTE2 H'680

DMTE3 H'6A0

DAERR H'6C0

SCIF ERI H'700

RXI H'720

SBRK H'740

TXI H'760

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest
number represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset]
in other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an
interrupt.

IRL: Interrupt request level (pins IRL3–IRL0).
Module/source: See the sections on the relevant supporting modules.
Notes: 1. When BRCR.UBDE = 1, PC = DBR; otherwise, PC = VBR + H’100

2. The priority order of external interrupts and supporting module interrupts can be set by
software.
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5.4 Exception Flow

5.4.1 Exception Flow

Figure 5.1 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions
are executed sequentially, one by one. Figure 5.1 shows the relative priority order of the
different kinds of exceptions (reset/general exception/interrupt). Register settings in the event of
an exception are shown only for SSR, SPC, EXPEVT/INTEVT, SR, and PC, but other registers
may be set automatically by hardware, depending on the exception. See section 5.5 for details.
Also, see section 5.5.4 for exception handling during execution of a delayed branch instruction
and a delay slot instruction, and in the case of instructions in which two data accesses are
performed.

Reset 
requested?

Execute next instruction

Yes

No
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Figure 5.1   Instruction Execution and Exception Handling
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5.4.2 Exception Requests and BL Bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers are set to their post-reset state, the registers of the other modules retain their
contents prior to the exception, and the CPU branches to the same address as in a reset (H'A000
0000). For the operation in the event of a user break, see Hardware manual section 20, User
Break Controller. If an ordinary interrupt occurs, the interrupt request is held pending and is
accepted after the BL bit has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software.

Thus, normally, the SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

5.4.3 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to the PC and the SSR contents to SR, the CPU returns
from the exception handling routine by branching to the SPC address. If the SPC and SSR were
saved to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents
and issuing the RTE instruction.
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5.5 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and the processor state after transition.

5.5.1 Resets

(1) Power-On Reset

• Source:

 6&.� pin high level and 5(6(7 pin low level

 When WTCSR.WT/IT = 1 && WTCSR.RTS = 0 and Watch Dog Timer is overflow, see
Hardware manual section 10, Clock Oscillation Circuits.

• Transition address: H'A000 0000

• Transition operations:

Exception code H'000 is set in the lower 12 bits of EXPEVT, initialization of VBR and SR is
performed, and a branch is made to PC = H'A000 0000.

In the initialization process, the VBR register is set to H'0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are set
to B'1111.

CPU and on-chip supporting module initialization is performed. For details, see the register
descriptions in the relevant sections. For some CPU functions, the 7567 pin and 5(6(7 pin
must be driven low. It is therefore essential to execute a power-on reset and drive the 7567
pin low when powering on.

Power_on_reset()

{

   EXPEVT = H'00000000;

   VBR = H'00000000;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   SR.(I0–I3) = B'1111;

   SR.FD = 0;

   Initialize_CPU();

   Initialize_Module(PowerOn);

   PC = H'A0000000;

}
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(2) Manual Reset

• Source:

 6&.� pin low level and 5(6(7 pin low level

 When the BL bit in SR is 1 and an exception other than a userbreak is generated.

 When WTCSR.RSTS =1 and Watch Dog Timer is overflow, see Hardware manual
section 10, Clock Oscillation Circuits.

• Transition address: H'A000 0000

• Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization process, the VBR register is set to H'0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are set
to B'1111.

CPU and on-chip supporting module initialization is performed. For details, see the register
descriptions in the relevant sections.

Manual_reset()

{

   EXPEVT = H'00000020;

   VBR = H'00000000;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   SR.(I0–I3) = B'1111;

   SR.FD = 0;

   Initialize_CPU();

   Initialize_Module(Manual);

   PC = H'A0000000;

}
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Table 5.3 Types of Reset

Reset State Transition
Conditions Internal States

Type SCK2 RESET CPU
On-Chip Supporting
Modules

Power-on
reset

High Low Initialized See Register Configuration
in each section

Manual
reset

Low Low Initialized

(3) Hitachi-UDI  Reset

• Source: SDIR.(TI3–TI0) = B'0110 (negation) or B'0111 (assertion)

• Transition address: H'A000 0000

• Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization process, the VBR register is set to H'0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are set
to B'1111.

CPU and on-chip supporting module initialization is performed. For details, see the register
descriptions in the relevant sections.

Hitachi-UDI_reset()

{

   EXPEVT = H'00000000;

   VBR = H'00000000;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   SR.(I0–I3) = B'1111;

   SR.FD = 0;

   Initialize_CPU()

   Initialize_Module(PowerOn);

   PC = H'A0000000;

}
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(4) Instruction TLB Multiple-Hit Exception

• Source: Multiple ITLB address matches

• Transition address: H'A000 0000

• Transition operations:

The virtual address (32 bit) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bit) is set in PTEH(31-10). The PTEH.ASID indicates
the ASID where the exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization process, the VBR register is set to H'0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are set
to B'1111.

CPU and on-chip supporting module initialization is performed in the same way as in a
manual reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   EXPEVT = H'00000140;

   VBR = H'00000000;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   SR.(I0–I3) = B'1111;

   SR.FD = 0;

   Initialize_CPU();

   Initialize_Module(Manual);

   PC = H'A0000000;

}
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(5) Data TLB Multiple-Hit Exception

• Source: Multiple UTLB address matches

• Transition address: H'A000 0000

• Transition operations:

The virtual address (32 bit) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bit) is set in PTEH(31-10). The PTEH.ASID indicates
the ASID where the exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization process, the VBR register is set to H'0000 0000, and in SR, the MD, RB,
and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are set
to B'1111.

CPU and on-chip supporting module initialization is performed in the same way as in a
manual reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   EXPEVT = H'00000140;

   VBR = H'00000000;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   SR.(I0–I3) = B'1111;

   SR.FD = 0;

   Initialize_CPU();

   Initialize_Module(Manual);

   PC = H'A0000000;

}
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5.5.2 General Exceptions

(1) Data TLB Miss Exception

• Source: Address mismatch in UTLB address comparison

• Transition address: VBR + H'0000 0400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits in SR are set to 1, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = read_access ? H'00000040 : H'00000060;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000400;

}

(2) Instruction TLB Miss Exception

• Source: Address mismatch in ITLB address comparison

• Transition address: VBR + H'0000 0400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0400.
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To speed up TLB miss processing, the offset is separate from that of other exceptions.

ITLB_miss_exception()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = H'00000040;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000400;

}

(3) Initial Page Write Exception

• Source: TLB is hit in a store access, but dirty bit D = 0

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100.

Initial_page_write_exception()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = H'00000080;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(4) Data TLB Protection Violation Exception

• Source: The access does not accord with the UTLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

00 Only read access enabled Cannot be accessed

01 Read/write access enabled Cannot be accessed

10 Only read access enabled Only read access enabled

11 Read/write access enabled Read/write access enabled

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'0A0 (for a read access) or H'0C0 (for a write access) is set in EXPEVT.
The BL, MD, and RB bits in SR are set to 1, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_ violation_ exception()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = read_access ? H'000000A0 : H'000000C0;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(5) Instruction TLB Protection Violation Exception

• Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

0 Access enabled Cannot be accessed

1 Access enabled Access enabled

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'0A0 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100.

ITLB_protection_ violation_ exception()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = H'000000A0;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(6) Data Address Error

• Source:

 Word data access from a non-word boundary (4n + 1 or 4n + 3)

 Longword data access from a non-longword boundary (4n + 1, 4n + 2, or 4n + 3)

 Quadword data access from a non-quadword boundary (8n + 1, 8n + 2, or 8n + 3, 8n + 4,
8n + 5, 8n + 6, 8n + 7)

 Access to area H'8000 0000–H'FFFF FFFF in user mode

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'0E0 (for a read access) or H'100 (for a write access) is set in EXPEVT.
The BL, MD, and RB bits in SR are set to 1, and a branch is made to PC = VBR + H'0100.
See section 3, MMU.

Data_address_error ()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = read_access ? H'000000E0 : H'00000100;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(7) Instruction Address Error

• Source:

 Instruction fetch from an odd address (4n + 1 or 4n + 3)

 Instruction fetch from area H'8000 0000–H'FFFF FFFF in user mode

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH (31–10). The PTEH.ASID
indicates the ASID where the exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'0E0 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100. See section 3, MMU.

Instruction_address_error()

{

   TEA = EXCEPTION_ADDRESS;

   PTEH.VPN = PAGE_NUMBER;

   SPC = PC;

   SSR = SR;

   EXPEVT = H'000000E0;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}

(8) Unconditional Trap

• Condition: Execution of TRAPA instruction

• Transition address: VBR + H'0000 0100

• Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in the SPC. The value of SR when the TRAPA
instruction is executed are saved in SSR. The 8-bit immediate value in the TRAPA
instruction is multiplied by 4, and the result is set in TRA (9–2). Exception code H'160 is set
in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()

{
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   SPC = PC + 2;

   SSR = SR;

   TRA = imm << 2;

   EXPEVT = H'00000160;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}

(9) General Illegal Instruction Exception

• Source:

 Decoding of an undefined instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S,
BF/S

Undefined instruction: H'FFFD

 Decoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code
other than H'FFFD is decoded.

General_illegal_instruction_exception()

{

   SPC = PC;

   SSR = SR;

   EXPEVT = H'00000180;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(10) Slot Illegal Instruction Exception

• Source:

 Decoding of an undefined instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S,
BF/S

Undefined instruction: H'FFFD

 Decoding of an instruction that modifies the PC in a delay slot

Instructions that modify the PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+, SR

 Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

 Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in the SPC. The SR
contents when this exception occurred are saved in SSR.

Exception code H'1A0 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code
other than H'FFFD is decoded.

Slot_illegal_instruction_exception()

{

   SPC = PC – 2;

   SSR = SR;

   EXPEVT = H'000001A0;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}
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(11) General FPU Disable Exception

• Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100.

General_fpu_disable_exception()

{

   SPC = PC;

   SSR = SR;

   EXPEVT = H'00000800;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000100;

}

Note: FPU instructions are instructions in which the first 4 bits of the instruction code are F,
and the LDS, STS, LDC.L, and STC.L instructions corresponding to FPUL and FPSCR.

(12) Slot FPU Disable Exception

• Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in the SPC. The SR
contents when this exception occurred are saved in SSR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0100.
Slot_fpu_disable_exception()
{
   SPC = PC - 2;
   SSR = SR;
   EXPEVT = H'00000820;
   SR.MD = 1;
   SR.RB = 1;
   SR.BL = 1;
   PC = VBR + H'00000100;

}
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(13) User Breakpoint Trap

• Source: Fulfilling of a break condition set in the user breakpoint controller

• Transition address: VBR + H'0000 0100

• Transition operations:

In case of a post-execution break, the PC contents for the instruction following the instruction
at which the breakpoint is set are set in the SPC. In case of a pre-execution break, the PC
contents for the instruction at which the breakpoint is set are set in the SPC.

The SR contents when the break occurred are saved in SSR. Exception code H'1E0 is set in
EXPEVT.

The BL, MD, and RB bits in SR are set to 1, and a branch is made to PC = VBR + H'0100. It
is also possible to branch to PC = DBR.

For details of the PC, etc., when a data break is set, see Hardware manual section 20, User
Break Controller.

user_break_exception()

{

   SPC = (pre-execution break ? PC : PC + 2);

   SSR = SR;

   EXPEVT = H'000001E0;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = (BRCR.UBDE==1 ? DBR : VBR + H'00000100);

}
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(14) FPU Exception

• Source: Exception due to execution of a floating-point operation

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR. Exception code H'120 is set in EXPEVT. The BL, MD, and RB bits in SR are
set to 1, and a branch is made to PC = VBR + H'0100 .

FPU_exception()

  {

     SPC = PC;

     SSR = SR;

     EXPEVT = H'00000120;

     SR.MD = 1;

     SR.RB = 1;

     SR.BL = 1;

     PC = VBR + H'00000100;

  }

5.5.3 Interrupts

(1) NMI

• Source: NMI pin edge detection

• Transition address: VBR + H'0000 0600

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in the
SPC and SSR.

Exception code H'1C0 is set in INTEVT. The BL, MD, and RB bits in SR are set to 1, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. When
the BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. See Hardware manual section 19, Interrupt Controller, for details.
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NMI()
{
   SPC = PC;
   SSR = SR;
   INTEVT = H'000001C0;
   SR.MD = 1;
   SR.RB = 1;
   SR.BL = 1;

   PC = VBR + H'00000600;

}

(2) IRL Interrupts

• Source: The interrupt mask bit setting in SR is less than the IRL (3–0) level, and the BL bit in
SR is 0 (accepted at instruction boundary).

• Transition address: VBR + H'0000 0600

• Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
the SPC. The SR contents at the time of acceptance are set in SSR.

The code corresponding to the IRL (3–0) level is set in INTEVT. See Hardware manula
table19.5, Interrupt Exception Handling Sources and Priority Order, for the corresponding
codes. The BL, MD, and RB bits in SR are set to 1, and a branch is made to VBR + H'0600.
The acceptance level is not set in the interrupt mask bits in SR. When the BL bit in SR is 1,
the interrupt is masked. See Hardware manual section 19, Interrupt Controller, for details.

IRL()

{

   SPC = PC;

   SSR = SR;

   INTEVT = H'00000200 ~ H'000003C0 ;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000600;

}
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(3) Supporting Module Interrupts

• Source: The interrupt mask bit setting in SR is less than the supporting module (Hitachi-UDI,
DMAC, TMU, RTC, SCI, SCIF, WDT, REF) interrupt level, and the BL bit in SR is 0
(accepted at instruction boundary).

• Transition address: VBR + H'0000 0600

• Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
the SPC. The SR contents at the time of acceptance are set in SSR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits
in SR are set to 1, and a branch is made to VBR + H'0600. The module interrupt levels should
be set as values between B'0000 and B'1111 in the interrupt priority level setting registers
(IRPA–IRPC) in the interrupt controller. See Hardware manual section 19, Interrupt
Controller, for details.

module_interruption()

{

   SPC = PC;

   SSR = SR;

   INTEVT = H'00000400 ~ H'00000760;

   SR.MD = 1;

   SR.RB = 1;

   SR.BL = 1;

   PC = VBR + H'00000600;

}



95

5.5.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from the
normal order.

1. Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will be
detected for each of these data transfers. In these cases, therefore, the following order is used
to determine priority.

a. Data address error in first data transfer

b. TLB miss in first data transfer

c. TLB protection violation in first data transfer

d. Initial page write exception in first data transfer

e. Data address error in second data transfer

f. TLB miss in second data transfer

g. TLB protection violation in second data transfer

h. Initial page write exception in second data transfer

2. Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they
are treated as a single instruction. Consequently, the priority order for exceptions that occur
in these instructions differs from the usual priority order. The priority order shown below is
for the case where the delay slot instruction has only one data transfer.

a. The delayed branch instruction is checked for priority levels 1 and 2.

b. The delay slot instruction is checked for priority levels 1 and 2.

c. A check is performed for priority level 3 in the delayed branch instruction and priority
level 3 in the delay slot instruction. (There is no priority ranking between these two.)

d. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as
in 1 above.

If the accepted exception (the highest-priority exception) is a delay slot instruction re-
execution type exception, the branch instruction PR register write operation (BSR, BSRF,
JSR PC ∅ PR operation) is inhibited.
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Section 6   Floating-Point Unit

6.1 Overview

The FPU has the following features:

• Conforms to IEEE754 standard

• 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

• Two rounding modes: Round to Nearest and Round to Zero

• Two normalization modes: Flush to Zero and Treat Denormalized Number

• Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

• Comprehensive instructions: Single-precision, double-precision, graphics support, system
control

When the DF bit in SR is set to 1, the floating-point unit (FPU) is disabled, and an to execute an
FPU instruction will cause an illegal instruction exception.

6.2 Data Formats

6.2.1 Floating-Point Format

A floating-point number consists of the following three fields:

• Sign (s)

• Exponent (e)

• Fraction (f)

The SH4 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31

s e f

30 23 22 0

Figure 6.1   Format of Single-Precision Floating-Point Number
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63

s e f

62 52 51 0

Figure 6.2   Format of Double-Precision Floating-Point Number

The exponent is expressed in biased form, as follows:

e = E + bias

The range of unbiased exponent E is Emin – 1 to Emax + 1. The two values Emin – 1 and Emax + 1 are
distinguished as follows. Emin – 1 indicates zero (both positive and negative sign) and a
denormalized number, and Emax + 1 indicates positive or negative infinity or not-a-number
(NaN). Table 6.1 shows bias, Emin, and Emax values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision

Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

bias +127 +1023

Emax +127 +1023

Emin –126 –1022

Floating-point number value v is determined as follows:

If E = Emax + 1 and f! = 0, v is not-a-number (NaN) irrespective of sign s
If E = Emax + 1 and f = 0, v = (–1)s (infinity) [positive or negative infinity]
If Emin < = E < = Emax , v = (–1)s2E (1.f) [normalized number]
If E = Emin – 1 and f! = 0, v = (–1)s2Emin (0.f) [denormalized number]
If E = Emin – 1 and f = 0, v = (–1)s0 [positive or negative zero]

Table 6.2 shows the range of each number in hexadecimal.
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Table 6.2 Floating-Point Number Ranges

Type Single-Precision Double-Precision

sNaN 7FFFFFFF to 7FC00000 7FFFFFFF FFFFFFFF to 7FF80000 00000000

qNaN 7FBFFFFF to 7F800001 7FF7FFFF FFFFFFFF to 7FF00000 00000001

+Infinity 7F800000 7FF00000 00000000

+Normalized 7F7FFFFF to 00800000 7FEFFFFF FFFFFFFF to 00100000 00000000

+Denormalized 007FFFFF to 00000001 000FFFFF FFFFFFFF to 00000000 00000001

+Zero 00000000 00000000 00000000

–Zero 80000000 80000000 00000000

–Denormalized 80000001 to 807FFFFF 80000000 00000001 to 800FFFFF FFFFFFFF

–Normalized 80800000 to FF7FFFFF 80100000 00000000 to FFEFFFFF FFFFFFFF

–Infinity FF800000 FFF00000 00000000

qNaN FF800001 to FFBFFFFF FFF00000 00000001 to FFF7FFFF FFFFFFFF

sNaN FFC00000 to FFFFFFFF FFF80000 00000000 to FFFFFFFF FFFFFFFF

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of not-a-number (NaN). A value is NaN in the following case:

• Sign bit: don’t care

• Exponent field: all 1 bits

• Fraction field: at least 1 of bits excluding MSB

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN
(qNaN) if 0.

31

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

30

N = 1: sNaN
N = 0: qNaN

23 22 0

Figure 6.3   NaN Bit Pattern of Single-precision

If a signaling NaN (sNaN) is input in an operation that generates a floating-point value other
than copy, FABS, or FNEG:
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• When the EV bit in the FPSCR register is 0, the operation result (output) is a quiet NaN
(qNaN).

• When the EV bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register do not change.

If a quiet NaN is input in an operation that generates a floating-point value, and a signaling NaN
has not been input in that operation, the output will almost always be a quiet NaN irrespective of
the setting of the EV bit in the FPSCR register. An exception will not be generated in this case.

The value of a qNAN generated by the SH4 as an operation result is always as follows.

• Single-precision qNaN: 7FBFFFFF

• Double-precision qNaN: 7FF7FFFF FFFFFFFF

See the individual instruction descriptions for details of floating-point operations when not-a-
number (NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the biased exponent is expressed as 0, the
fraction as a non-zero value, and the hidden bit as 0.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number (operand
source or operation result) is always flushed to 0 in a floating-point operation that generates a
value (an operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (operand source or operation result) is
processed as it is. See the individual instruction descriptions for details of floating-point
operations when a denormalized number is input.
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6.3 Registers

6.3.1 Floating-Point Registers

Figure 2.2 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FR0–FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0–
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

• Floating-point registers, FPRi_BANKj (32 registers)

FPR0_BANK0–FPR15_BANK0
FPR0_BANK1–FPR15_BANK1

• Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0–FR15 indicate to FPR0_BANK0–FPR15_BANK0;
when FPSCR.FR = 1, FR0–FR15 indicate FPR0_BANK1–FPR15_BANK1.

• Double-precision floating-point registers, DRi (8 registers): A DR register comprises two FR
registers

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

• Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

• Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0–XF15 indicate to FPR0_BANK1–FPR15_BANK1;
when FPSCR.FR = 1, XF0–XF15 indicate FPR0_BANK0–FPR15_BANK0.

• Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14,
XF15}

• Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = XF0 XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15
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FPR0  Bank 0
FPR1  Bank 0

FPR2  Bank 0

FPR3  Bank 0

FPR4  Bank 0

FPR5  Bank 0

FPR6  Bank 0

FPR7  Bank 0

FPR8  Bank 0

FPR9  Bank 0

FPR10  Bank 0

FPR11  Bank 0

FPR12  Bank 0

FPR13  Bank 0

FPR14  Bank 0

FPR15  Bank 0






XF0
XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

XD0


XD2



XD4



XD6



XD8



XD10



XD12



XD14

XMTRX

FPSCR.FR = 1

DR0


DR2



DR4



DR6



DR8



DR10



DR12



DR14

FV0






FV4







FV8







FV12

FR0
FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

FPSCR.FR = 0

FPR0  Bank 1

FPR1  Bank 1

FPR2  Bank 1

FPR3  Bank 1

FPR4  Bank 1

FPR5  Bank 1

FPR6  Bank 1

FPR7  Bank 1

FPR8  Bank 1

FPR9  Bank 1

FPR10  Bank 1

FPR11  Bank 1

FPR12  Bank 1

FPR13  Bank 1

FPR14  Bank 1

FPR15  Bank 1

FR0
FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

DR0


DR2



DR4



DR6



DR8



DR10



DR12



DR14

FV0






FV4







FV8







FV12

XD0


XD2



XD4



XD6



XD8



XD10



XD12



XD14

XMTRX XF0
XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

Figure 6.4   Floating-Point Registers
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6.3.2 Floating-Point Unit Status/Control Register (FPSCR)

• Floating-Point Unit Status/Control Register, FPSCR (32-bit, initial value = undefined)

31 22 21 20 19 18 17 12 11 7 6 2 1 0

Reserved FR SZ PR DN Cause Enable Flag RM

 FR: Floating-Point Register Bank

FR = 0: FPR0_BANK0–FPR15_BANK0 are assigned to FR0–FR15; FPR0_BANK1–
FPR15_BANK1 are assigned to XF0–XF15.

FR = 1: FPR0_BANK0–FPR15_BANK0 are assigned to XF0–XF15; FPR0_BANK1–
FPR15_BANK1 are assigned to FR0–FR15.

 SZ: Transfer Size Mode

SZ = 0: An FMOV instruction comprises a single-precision floating-point FMOV.

SZ = 1: An FMOV instruction comprises pair single-precision floating-point FMOVs (64
bits).

 PR: Precision Mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the
operation of graphics-related instructions is undefined).

Do not set both SZ and PR to 1. This setting is reserved.

[SZ, PR] = 11: Reserved (FPU instruction operation is undefined.)

 DN: Denormalization Mode

DN = 0: A denormalized number is treated as a denormalized number.

DN = 1: A denormalized number is treated as zero.

FPU
Error (E)

Invalid
Op. (V)

Zero
Div. (Z)

Overflow
(O)

Underflow
(U)

Indexact
(I)

Cause FPU exception
source field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

Non Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
request field

Non Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

When an FPU exception is requested, the bit corresponding the cause/flag field is set to 1.
Each time an FPU operation instruction is executed, the cause field is zeroized first. The
flag field retains the set value of 1 until zeroized by software.

 RM: Rounding Mode
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RM = 00: Round to Nearest

RM = 01: Round to Zero

RM = 10: Reserved

RM = 11: Reserved

Notes: 1. The SZ and PR bits and cause, enable, and flag fields for exceptions O/U/I have been
added.

2. The cause field for exception E has been added.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a floating-point
number, the processing flow is as follows:

R1 ∅ (LDS instruction) ∅ FPUL ∅ (FLOAT instruction) ∅ FR1

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result
from the intermediate result.  So the results of combinational instructions like as
FMAC/FTRV/FIPR is/are different from that of using only basic instructions as
FADD/FSUB/FMUL. Because number of Rounding is different, one time at FMAC and 2times
at FADD/FSUB and FMUL.

 There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

RM = 00: Round to Nearest

RM = 01: Round to Zero

• Round to Nearest

The value is rounded to the nearest expressible value. If there are two nearest expressible
values, the one with an LSB of 0 is selected.

However, if the value above the Round bit of the unrounded value is the maximum
expressible absolute value, the value is rounded to the maximum expressible absolute value
if the Round bit is 0, or to infinity if the Round bit is 1.

• Round to Zero

The digits below the Round bit of the unrounded value are discarded.
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6.5 Floating-Point Exceptions

FPU-related exceptions are as follows:

• General illegal instruction/slot illegal instruction exception

Occurs if an FPU instruction is executed when SR.DF = 1.

• FPU exceptions

Sources are as follows:

 FPU error (E): When FPSCR.DN = 0 and a denormalized number is input

 Invalid operation (V): In case of an invalid operation, such as NaN input

 Division by zero (Z): Division with a zero divisor

 Overflow (O): When the operation result overflows

 Underflow (U): When the operation result underflows

 Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR.cause field contains bits corresponding to all of above sources E, V, Z, O, U, and I,
and the FPSCR.flag and enable fields contain bits corresponding to sources V, Z, O, U, and I,
but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause fields is set to 1 and that in
the flag fields is accumulated to 1.  When an exception source does not occurs, the
corresponding bit in the cause fields is set to 0 and that in the flag fields is not changed.

• Enable/disable Exception processings

SH4 supports the enable exception processings and the disable exception processing.

Enable exception processings is occured as follows:

 FPU error (E): When FPSCR.DN = 0 and a denormalized number is input

 Invalid operation (V): When FPSCR.EN.V =1 and (instruction =FTRV or (instruction
!=FTRV and an invalid operation))

 Division by zero (Z): When FPSCR.EN.Z =1 and division with a zero divisor

 Overflow (O): When FPSCR.EN.O =1 and the possibirity of the operation result overflows

 Underflow (U): When FPSCR.EN.U =1 and the possibirity of the operation result
underflows

 Inexact exception (I): When FPSCR.EN.I =1 and the possibirity of the operation result
inexact

Each possibirity is shown at each instruciton discription. All enable exceptions raised by the
FPU are mapped onto the same SH Exception Event. The semantics of the exception are
determined by software by reading the system register FPSCR and interpreting the
information maintained there.That  all bits of FPSCR cause field are not set show the enable
field O,U,I and V(FTRV case only) is/are set, but Actual exception does not occured. And
any enable exception operations does not change the destination register.
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Not above cases, the FPU do disable exception processing. All processing set 1 to the
corresponding bits to sources V, Z, O, U, and I and each exception has each disable
exception processings.

 Invalid operation (V):produce qNAN as a result.

 Division by zero (Z): produce a correctly signed infinity.

 Overflow (O): When rounding mode = RZ, produce a correctly signed maximum
normalized number. When rounding mode = RN, produce a correctly signed infinity.

 Underflow (U): When FPSCR.DN =0, produce a correctly signed zero. When FPSCR.DN
=1, produce denormalized number.

 Inexactexception (I): produce the inexact result.

6.6 Graphic Support fiture

SH4 support 2types graphic fiture. The first fiture is the new instruction for geometory
operations. The other is two single-precision transfer instructions for fast data movment.

6.6.1 Geometoric Instructions

Geometoric Instructions are approximate.  To keep minimum hardware and to get high-
performance, SH4 negrect relative small value of the pertial results of 4 multiplier. So, the result
of each operation have an error shown below.

   MAX ERROR = Maximum result of multiplier * 2^(-25)

                  + MAX(result value *(2^(-23), 2^(-149))

(1) FIPR FVm,FVn (m, n: 0, 4, 8, 12)

This instruction is basically used for

 inner product (m != n) : typically this operation is used by the judgment of front/back of
poligon surface.

 sum of square of each element (m = n): typically this operation is used by getting the
length of a vector.

FIPR always set 1 to the inexact bit in the cause/flag fields for high performance operations.
So, if the corresponding bit in the enable filed be set,  enable exception processing  is done.

(2) FTRV XMTRX,FVn (n: 0, 4, 8, 12)

This instruction is basically used for

 matrix (4*4) * vector(4) : typically this operation is used by vector transformation(4
dimension), such as view point changing, changing angle/moving, and so on. Basically,
affine transaction needs 4 *4 matrix for angle + pararel movment. So SH4 supports 4
dimension operation.
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 matrix (4*4) * matrix (4*4): for this operation, FTRV have to be used 4 times. For high
performance vector transformations, each vectors had better be changed one time than
many times on transfermation. So transfation matrixs are generated on two kinds of
transformation.

FTRV  always set 1 to the inexact bit in the cause/flag fields for high performance
operations.  So, if the corresponding bit in the enable filed be set,  enable exception
processing  is done. Also for high performance, FTRV cannot check all data types in contentt
of register.  If the V bit in the enable filed be set,  enable exception processing  is done.

(3) FRCHG

This instruction  change the bank registers.  At example,  for FTRV instruction, programmers
have to set the MATRIX on the back. But to make the matrix, it is easy to use front register.
If users can use LDC to FPSCR instruction, this instruction cost 4~5 machine cycles because
keeping the FPU status. So, this instruction is supported for 1 machine cycle changing the
FPSCR.FR bit.

6.6.2 two single precision data transfer

After new powerful geometric instruction,s SH4 supports fast data movment instructions. When
FPSCR.SZ = 1, SH4 can move data at two single-precision transfer.

 (1) FMOV DRm/XDm, DRn/XDn (m, ;n: 0, 2, 4, 6, 8, 10, 12,14 )

 (2) FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12,14   n=0~15 )

These  instructions can permit programmers to move two single-precision(64bit) transfer. So
they can get twice performance of data band width.

(3) FSCHG

This instruction  change the size bit of FPSCR.  the perpuse is the same as FRCHG.
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Section 7   Instruction Set

7.1 Execution Environment

PC: At the beginning of an instruction execution, PC indicates the instruction address of the
instruction.

Data Size and Data Types: The SH4 instruction set is implemented with fixed-length 16-bit
width instructions.  SH4 accesses memory with several data sizes: byte (8 bits),  word (16 bits),
longword (32 bits), and quadword (64 bits).  Single precision floating point data (32 bits) can be
accessed from / to memory using either longword or quadword data size.  Double presicion
floating point data (64 bits) can be accessed from / to memory using longword data size.  When
double presicion floating operation is designated (FPSCR.PR=1), the result of quadword access
operation is undefined.  When SH4 moves byte and word size data from memory to register, the
data is sign-extended.

Load/Store Architecture: The SH4 features a load-store architecture in which basic operations
are executed in registers. Operations requiring memory access are executed in registers
following register loading, except for bit-manipulation operations such as logical AND
functions, which are executed directly in memory.

Delayed Branch: SH4 branch instructions and RTE are delayed branches, except two branch
instructions: BF and BT.  On a delayed branch, the next instruction of the branch is executed
before the branch target instruction.  This execution slot after the delayed branch is called "delay
slot".  For example, BRA execution sequence is as follows:

       static sequence        dynamic sequence     

BRA TARGET BRA TARGET

ADD R1, R0 ADD R1, R0 ; ADD in the delay slot is executed
 prior to

next_2 target_instr ; branching to TARGET.

Delay Slot: Some instructions cause the slot illegal instruction exception when they are executed
in a delay slot, see Section 5 "Exception Handling".  The next instruction of not-taken BF/S and
BT/S is also a delay slot instruction.

T bit: The T bit in the status register (SR) is used to indicate the result of compare operations,
and is referred with a conditional branch instructions. For example, the following shows a
conditional branch sequence.

ADD #1, R0 ;T bit not modified by ADD operation

CMP/EQ R1, R0 ;T bit set to 1 when R0 = R1

BT TARGET ;branch taken to TARGET when T bit = 1 (R0 = R1)
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SR bits on RTE delay slot: In RTE delay slot the status register (SR) bit are refered as
following.  Instruction access uses MD bit before change, data access uses MD bit after change.
Other bits: S, T, M, Q, FD, BL and RB after change are used for instruction execution of the
delay slot.  STC and STC.L SR instructions access all SR bits after change.

Constant Values: An 8-bit constant value can be specified in an instruction code, immediate
value.  Also 16- and 32-bit constant values can be defined in memory, literal constant value, and
they can be referred with PC-relative load instructions:

  MOV.W @(disp, PC), Rn, and

  MOV.L @(disp, PC), Rn.

There is no PC-relative load instruction for a floating point number.  However SH4 has FLDI0
and FLDI1 instructions to set 0.0 or 1.0 to a single precision floating point register.

7.2 Addressing Modes

Addressing modes and effective address calculations are shown in Table 7.1.  When a location in
the virtual memory space is accessed, MMUCR.AT = 1, the effective address is translated to a
physical memory address.  The lowest 8 bits in PTEH are also referred as ASID of the access if
the multiple virtual memory spaces system were chosen, MMUCR.SV = 0, see Section 3
"Memory Management Unit".
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Table 7.1 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Address Calculation Method Calculation Formula

Indirect Addressing @Rn Effective address is the content of Rn. Rn → EA   (EA: effective address)

Post-increment
Addressing

@Rn+ Effective address is the content of Rn.
Additionally, Rn is increased by a byte number of
the access size: 1 on a byte access, 2 on a word
access, 4 on a longword access, 8 on a
quadword access.

Rn → EA

Byte access: Rn + 1 → Rn

Word access: Rn + 2 → Rn

Longword access: Rn + 4 → Rn

Quadword access: Rn + 8 → Rn

Pre-decrement
Addressing

@–Rn Effective address is the result of subtracting the
byte number of the access size from the content
of Rn. The result of the subtraction is also stored
in Rn. The number is 1 on a byte access, 2 on a
word access, 4 on a longword access, or 8 on a
quadword access.

Byte access: Rn - 1 → Rn

Word access: Rn - 2 → Rn

Longword access: Rn - 4 → Rn

Quadword access: Rn - 8 → Rn

Rn → EA

Displacement
Addressing

@(disp:4, Rn) Effective address is the result of adding the
content of Rn and the displacement which is the
result of multiplying the zero-extended value of
the 4-bit disp by the access size: 1 on a byte
access, 2 on a word access, 4 on a longword
access.

Byte: Rn + disp → EA

Word: Rn + disp × 2 → EA

Longword: Rn + disp × 4 → EA

(disp is zero-extended.)

Index Addressing @(R0, Rn) Effective address is the sum of the contents of Rn
and R0.

Rn + R0 → EA

GBR-based
Displacement
Addressing

@(disp:8, GBR)Effective address is the result of adding the
content of GBR and a displacement which is the
result of multiplying the zero-extended value of
the 8-bit disp by the access size: 1 on a byte
access, 2 on a word access, 4 on a longword
access.

Byte: GBR + disp → EA

Word: GBR + disp × 2 → EA

Longword: GBR + disp × 4 → EA

(disp is zero-extended.)

GBR-based Index
Addressing

@(R0, GBR) Effective address is the sum of the contents of
GBR and R0.

GBR + R0 → EA
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Table 7.1 Addressing Modes and Effective Addresses (continue)

Addressing

Mode

Instruction

Format Effective Address Calculation Method Calculation Formula

PC-relative

Addressing

@(disp:8, PC) Effective address is the result of adding 4,
PC(instruction address of the instruction), and the
displacement which is the result of multiplying the
zero-extended value of the 8-bit disp by the
access size: 2 on a word access, or 4 on a
longword access. On a longword access, the
lowest 2 bits of PC are masked to zero.

Word: PC+4 + disp × 2 → EA

Longword: (PC & 0xFFFF FFFC)+

4 + disp × 4 → EA

(PC addresses the instruction.)

(disp is zero-extended.)

PC-relative Branch disp:8 Target address is the result of adding 4, PC
(instruction address of the instruction), and the
displacement which is the result of multiplying the
sign-extended value of the 8-bit disp by 2.

PC+ 4 + disp × 2 → Branch_Target

(PC addresses the instruction.)

(disp is sign-extended.)

disp:12 Target address is the result of adding 4, PC
(instruction address of the instruction), and the
displacement which is the result of multiplying the
sign-extended value of the 12-bit disp by 2.

PC+ 4 + disp × 2 → Branch_Target

(PC addresses the instruction.)

(disp is sign-extended.)

PC-relative Branch Rn Effective address is the sum of PC and Rn
contents.

PC+ 4 + Rn → Branch_Target

Immediate value #imm:8 8-bit immediate value of TST, AND, OR, or

XOR instruction is zero-extended.

—

#imm:8 8-bit immediate data imm of MOV, ADD, or

CMP/EQ instruction is sign-extended.

—

#imm:8 8-bit immediate data imm of TRAPA instruction

is zero-extended and multiplied by 4.

—

Note: For the addressing modes below that use displacement (disp), the assembler descriptions
in this manual show the value before scaling (x1, x2, or x4) is performed according to the
operand size.  This is done to clarify the operation of the IC.  Refer to the relevant
assembler notation rules for the actual assembler descriptions.
@ (disp:4, Rn) ; displacement addressing
@ (disp:8, GBR) ; GBR-based displacement addressing
@ (disp:8, PC) ; PC-relative addressing
disp:8, disp:12 ; PC-relative branch
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7.3 Instruction Set

The notation, used in the following lists of the SH4 instructions, is described in Table 7.2.

Table 7.2 Instruction List Notation

Item Format Explanation
Instruction
mnemonics

OP.Sz  SRC,DEST OP: Operation code
Sz: Size
SRC: Source operand
DEST: Source and/or Destination operand

Operation
summary

→, ←
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Direction of transfer
Memory operand
Flag bits in SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit shift

Instruction
code

MSB ↔ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
    0000:  R0, FR0
    0001:  R1, FR1
        :
    1111:  R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn:   Register number (DRm, XDm, Rn_BANK)
    000: DR0, XD0, R0_BANK
    001: DR2, XD2, R1_BANK
        :
    111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn:   Register numer (FVn)
    00: FV0
    01: FV4
    10: FV8
    11: FV12
iiii: immediate value
dddd: Displacement

Privileged
mode

Indicates whether privileged mode applies

T bit Value of T bit after instruction is executed
—: No change

Note: Scaling (×1, ×2, ×4, ×8) is performed according to the instruction operand size.
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Table 7.3 Fixed Point Transfer Instructions

Instruction Operation Code Privileged T Bit
MOV #imm,Rn imm → Sign extension → Rn 1110nnnniiiiiiii — —
MOV.W @(disp,PC),Rn (disp × 2 + PC + 4) → Sign extension → Rn 1001nnnndddddddd — —
MOV.L @(disp,PC),Rn (disp × 4 + PC & 0xffff fffc + 4) → Rn 1101nnnndddddddd — —
MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — —
MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — —
MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — —
MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — —
MOV.B @Rm,Rn (Rm) → Sign extension → Rn 0110nnnnmmmm0000 — —
MOV.W @Rm,Rn (Rm) → Sign extension → Rn 0110nnnnmmmm0001 — —
MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — —

MOV.B Rm,@–Rn Rn–1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — —

MOV.W Rm,@–Rn Rn–2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — —

MOV.L Rm,@–Rn Rn–4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — —
MOV.B @Rm+,Rn (Rm) → Sign extension → Rn, Rm + 1 → Rm 0110nnnnmmmm0100 — —
MOV.W @Rm+,Rn (Rm) → Sign extension → Rn, Rm + 2 → Rm 0110nnnnmmmm0101 — —
MOV.L @Rm+,Rn (Rm) → Rn,Rm + 4 → Rm 0110nnnnmmmm0110 — —
MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — —
MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — —
MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — —
MOV.B @(disp,Rm),R0 (disp + Rm) → Sign extension → R0 10000100mmmmdddd — —
MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → Sign extension → R0 10000101mmmmdddd — —
MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — —
MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — —
MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — —
MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — —
MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign extension → Rn 0000nnnnmmmm1100 — —
MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign extension → Rn 0000nnnnmmmm1101 — —
MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — —
MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — —
MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — —
MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — —
MOV.B @(disp,GBR),R0 (disp + GBR) → Sign extension → R0 11000100dddddddd — —
MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → Sign extension → R0 11000101dddddddd — —
MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — —
MOVA @(disp,PC),R0 disp × 4 + PC & 0xffff fffc + 4  → R0 11000111dddddddd — —
MOVT Rn T → Rn 0000nnnn00101001 — —
SWAP.B Rm,Rn Rm → Swap the bottom two bytes → Rn 0110nnnnmmmm1000 — —
SWAP.W Rm,Rn Rm → Swap the two words → Rn 0110nnnnmmmm1001 — —
XTRCT Rm,Rn Rm<<16 | Rn>>16 → Rn 0010nnnnmmmm1101 — —
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Table 7.4 Arithmetic Instructions

Instruction Operation Code Privileged T Bit
ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — —
ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — —
ADDC Rm,Rn Rn + Rm + T → Rn, Carry → T 0011nnnnmmmm1110 — Carry
ADDV Rm,Rn Rn + Rm → Rn, Overflow → T 0011nnnnmmmm1111 — Overflow
CMP/EQ #imm,R0 If R0 = imm, 1 → T, else 0 → T 10001000iiiiiiii — result
CMP/EQ Rm,Rn If Rn = Rm, 1 →T, else 0 → T 0011nnnnmmmm0000 — result
CMP/HS Rm,Rn If Rn ³ Rm unsigned, 1 → T, else 0 → T 0011nnnnmmmm0010 — result
CMP/GE Rm,Rn If Rn ³ Rm signed, 1 → T, else 0 → T 0011nnnnmmmm0011 — result
CMP/HI Rm,Rn If Rn > Rm unsigned, 1 → T, else 0 → T 0011nnnnmmmm0110 — result
CMP/GT Rm,Rn If Rn > Rm signed, 1 → T, else 0 → T 0011nnnnmmmm0111 — result
CMP/PZ Rn If Rn ³ 0, 1 → T, else 0 → T 0100nnnn00010001 — result
CMP/PL Rn If Rn > 0, 1 → T, else 0 → T 0100nnnn00010101 — result
CMP/STR Rm,Rn If any byte in (Rn^Rm) = 0, 1 → T, else 0 → T 0010nnnnmmmm1100 — result
DIV1 Rm,Rn Iteration for division (Rn/Rm) 0011nnnnmmmm0100 — result
DIV0S Rm,Rn Initialization for signed division 0010nnnnmmmm0111 — result
DIV0U Initialization for unsigned division 0000000000011001 — 0
DMULS.L Rm,Rn Signed Rn × Rm → 64 bits → MACH,MACL 0011nnnnmmmm1101 — —
DMULU.L Rm,Rn Unsigned Rn × Rm → 64bits → MACH,MACL 0011nnnnmmmm0101 — —
DT Rn Rn – 1 → Rn, if Rn = 0, 1 → T, else 0 → T 0100nnnn00010000 — result
EXTS.B Rm,Rn Lowest byte in Rm → sign-extended → Rn 0110nnnnmmmm1110 — —
EXTS.W Rm,Rn Lower word in Rm → sign-extended → Rn 0110nnnnmmmm1111 — —
EXTU.B Rm,Rn Lowest byte in Rm → zero-extended → Rn 0110nnnnmmmm1100 — —
EXTU.W Rm,Rn Lower word in Rm → zero-extended → Rn 0110nnnnmmmm1101 — —
MAC.L @Rm+,@Rn+ Signed (Rn) × (Rm) + MAC → MAC,

Rn + 4 → Rn, Rm + 4 → Rm
(32 × 32 + 64 → 64 bits)

0000nnnnmmmm1111 — —

MAC.W @Rm+,@Rn+ Signed (Rn) × (Rm) + MAC → MAC,
Rn + 2 → Rn, Rm + 2 → Rm
(16 × 16 + 64 → 64 bits)

0100nnnnmmmm1111 — —

MUL.L Rm,Rn Rn × Rm → MACL (32 × 32 → 32 bits) 0000nnnnmmmm0111 — —
MULS.W Rm,Rn Signed Rn × Rm → MAC (16 × 16 → 32 bits) 0010nnnnmmmm1111 — —
MULU.W Rm,Rn Unsigned Rn × Rm → MAC (16 × 16 → 32

bits)

0010nnnnmmmm1110 — —

NEG Rm,Rn 0–Rm → Rn 0110nnnnmmmm1011 — —
NEGC Rm,Rn 0–Rm–T → Rn, Borrow → T 0110nnnnmmmm1010 — Borrow
SUB Rm,Rn Rn–Rm → Rn 0011nnnnmmmm1000 — —
SUBC Rm,Rn Rn–Rm–T → Rn, Borrow → T 0011nnnnmmmm1010 — Borrow
SUBV Rm,Rn Rn–Rm → Rn, Underflow → T 0011nnnnmmmm1011 — Underflow
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Table 7.5 Logical Instructions

Instruction Operation Code Privileged T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm → (R0 + GBR) 11001101iiiiiiii — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 + GBR) 11001111iiiiiiii — —

TAS.B @Rn If (Rn) = 0, 1 →T, else 0 → T, 1 → MSB of

(Rn)

0100nnnn00011011 — result

TST Rm,Rn Rn & Rm, if result = 0, 1 → T, else 0 → T 0010nnnnmmmm1000 — result

TST #imm,R0 R0 & imm, if result = 0, 1 → T, else 0 → T 11001000iiiiiiii — result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,

if result = 0, 1 → T, else 0 → T

11001100iiiiiiii — result

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 — —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm → (R0 + GBR) 11001110iiiiiiii — —
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Table 7.6 Shift Instructions

Instruction Operation Code Privileged T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB

SHAD Rm,Rn Rm ³ 0: Rn << Rm → Rn

Rm < 0: Rn >> Rm → Rn arithmetically

0100nnnnmmmm1100 — —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB

SHLD Rm,Rn Rm ³ 0: Rn << Rm → Rn

Rm < 0: Rn >> Rm → Rn logically

0100nnnnmmmm1101 — —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — —
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Table 7.7 Branch Instructions

Instruction Operation Code Privileged T Bit

BF label If T = 0, disp × 2 + PC + 4 → PC 10001011dddddddd — —

BF/S label If T = 0, disp × 2 + PC + 4 → PC

(delayed branch)

10001111dddddddd — —

BT label If T = 1, disp × 2 + PC + 4 → PC 10001001dddddddd — —

BT/S label If T = 1, disp × 2 + PC + 4 → PC

(delayed branch)

10001101dddddddd — —

BRA label disp × 2 + PC + 4 → PC

(delayed branch)

1010dddddddddddd — —

BRAF Rn Rn + PC + 4→ PC

(delayed branch)

0000nnnn00100011 — —

BSR label PC + 4 → PR, disp × 2 + PC + 4 → PC

(delayed branch)

1011dddddddddddd — —

BSRF Rn PC + 4 → PR, Rn + PC + 4 → PC

(delayed branch)

0000nnnn00000011 — —

JMP @Rn Rn → PC

(delayed branch)

0100nnnn00101011 — —

JSR @Rn PC +  4 → PR, Rn → PC

(delayed branch)

0100nnnn00001011 — —

RTS PR → PC

(delayed branch)

0000000000001011 — —
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Table 7.8 System Control Instructions

Instruction Operation Code Privileged T Bit
CLRMAC 0 → MACH, MACL 0000000000101000 — —
CLRS 0 → S 0000000001001000 — —
CLRT 0 → T 0000000000001000 — 0
LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB
LDC Rm,GBR Rm → GBR 0100mmmm00011110 — —
LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged —
LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged —
LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged —
LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged —
LDC Rm,Rn_BANK Rm → Rn_BANK (n: 0 to 7) 0100mmmm1nnn1110 Privileged —
LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — —
LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged —
LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged —
LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged —
LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK, Rm + 4 → Rm 0100mmmm1nnn0111 Privileged —
LDS Rm,MACH Rm → MACH 0100mmmm00001010 — —
LDS Rm,MACL Rm → MACL 0100mmmm00011010 — —
LDS Rm,PR Rm → PR 0100mmmm00101010 — —
LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 — —
LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — —
LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — —
LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged —
MOVCA.L R0,@Rn store long not fetching block 0000nnnn11000011 — —
NOP no operation 0000000000001001 — —
OCBI @Rn invalidate data cache block 0000nnnn10010011 — —
OCBP @Rn writeback and invalidate data cache block 0000nnnn10100011 — —
OCBWB @Rn writeback data cache block 0000nnnn10110011 — —
PREF @Rn (Rn) → data cache 0000nnnn10000011 — —
RTE SSR → SR, SPC → PC

(delayed branch)

0000000000101011 Privileged —

SETS 1 → S 0000000001011000 — —
SETT 1 → T 0000000000011000 — 1
SLEEP Sleep or Standby 0000000000011011 Privileged —
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Table 7.8 System Control Instructions (continue)

Instruction Operation Code Privileged T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — —

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged —

STC DBR,Rn DBR→ Rn 0000nnnn11111010 Privileged —

STC Rm_BANK,Rn Rm_BANK→ Rn (m: 0 to 7) 0000nnnn1mmm0010 Privileged —

STC.L SR,@–Rn Rn–4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged —

STC.L GBR,@–Rn Rn–4 → Rn, GBR → (Rn) 0100nnnn00010011 — —

STC.L VBR,@–Rn Rn–4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged —

STC.L SSR,@–Rn Rn–4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged —

STC.L SPC,@–Rn Rn–4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged —

STC.L SGR,@–Rn Rn–4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged —

STC.L DBR,@–Rn Rn–4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@–Rn Rn–4 → Rn, Rm_BANK → (Rn) (m: 0 to 7) 0100nnnn1mmm0011 Privileged —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — —

STS PR,Rn PR → Rn 0000nnnn00101010 — —

STS.L MACH,@–Rn Rn–4 → Rn, MACH → (Rn) 0100nnnn00000010 — —

STS.L MACL,@–Rn Rn–4 → Rn, MACL → (Rn) 0100nnnn00010010 — —

STS.L PR,@–Rn Rn–4 → Rn, PR → (Rn) 0100nnnn00100010 — —

TRAPA #imm PC → SPC, SR → SSR, 0x160 → EXPEVT

imm × 4  → TRA, VBR + 0x100→ PC

11000011iiiiiiii — —
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Table 7.9 Floating Point Single-precision Instructions

Instruction Operation Code Privileged T Bit

FLDI0 FRn 0.0 → FRn 1111nnnn10001101 — —

FLDI1 FRn 1.0 → FRn 1111nnnn10011101 — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — —

FMOV.S FRm,@-Rn Rn - 4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 → Rm 1111nnn0mmmm1001 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — —

FMOV DRm,@-Rn Rn - 8 → Rn, DRm → (Rn) 1111nnnnmmm01011 — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — —

FSTS FPUL,FRn FPUL  → FRn 1111nnnn00001101 — —

FABS FRn  FRn &  0x7fff ffff→ FRn 1111nnnn01011101 — —

FADD FRm,FRn FRn + FRm→ FRn 1111nnnnmmmm0000 — —

FCMP/EQ FRm,FRn if FRn = FRm, 1 → T, else 0  → T 1111nnnnmmmm0100 — result

FCMP/GT FRm,FRn if FRn > FRm, 1 → T, else 0  → T 1111nnnnmmmm0101 — result

FDIV FRm,FRn FRn / FRm → FRn 1111nnnnmmmm0011 — —

FLOAT FPUL,FRn int_to_float[FPUL]→ FRn 1111nnnn00101101 — —

FMAC FR0,FRm,FRn FRm * FR0 + FRn → FRn 1111nnnnmmmm1110 — —

FMUL FRm,FRn FRn * FRm→ FRn 1111nnnnmmmm0010 — —

FNEG FRn FRn ^ 0x8000 0000 → FRn 1111nnnn01001101 — —

FSQRT FRn square_root[FRn] → FRn 1111nnnn01101101 — —

FSUB FRm,FRn FRn - FRm → FRn 1111nnnnmmmm0001 — —

FTRC FRm,FPUL float_to_int [FRm] → FPUL 1111mmmm00111101 — —
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Table 7.10 Floating Point Double-precision Instructions

Instruction Operation Code Privileged T Bit

FABS DRn  DRn & 0x7fff ffff ffff ffff→ DRn 1111nnn001011101 — —

FADD DRm,DRn DRn + DRm→ DRn 1111nnn0mmm00000 — —

FCMP/EQ DRm,DRn if DRn = DRm, 1  → T, else 0  → T 1111nnn0mmm00100 — result

FCMP/GT DRm,DRn if DRn > DRm. 1  → T, else 0  → T 1111nnn0mmm00101 — result

FCNVDS DRm,FPUL double_to_float[DRm] → FPUL 1111mmm010111101 — —

FCNVSD FPUL,DRn float_to_double[FPUL] → DRn 1111nnn010101101 — —

FDIV DRm,DRn DRn / DRm → DRn 1111nnn0mmm00011 — —

FLOAT FPUL,DRn int_to_double[FPUL] → DRn 1111nnn000101101 — —

FMUL DRm,DRn DRn * DRm→ DRn 1111nnn0mmm00010 — —

FNEG DRn DRn ^ 0x8000 0000 0000 0000 → DRn 1111nnn001001101 — —

FSQRT DRn square_root[DRn] → DRn 1111nnn001101101 — —

FSUB DRm,DRn DRn - DRm → DRn 1111nnn0mmm00001 — —

FTRC DRm,FPUL double_to_int[DRm] → FPUL 1111mmm000111101 — —

Table 7.11 Floating Point Control Instructions

Instruction Operation Code Privileged T Bit

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — —

LDS Rm,FPSCR Rm →FPSCR 0100mmmm01101010 — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm + 4→ Rm 0100mmmm01010110 — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm + 4→ Rm 0100mmmm01100110 — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — —

STS.L FPUL,@-Rn Rn - 4  → Rn, FPUL→ (Rn) 0100nnnn01010010 — —

STS.L FPSCR,@-Rn Rn - 4  → Rn, FPSCR→ (Rn) 0100nnnn01100010 — —



123

Table 7.12 Floating Point Graphics Accelerating Instructions

Instruction Operation Code Privileged T Bit

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — —

FMOV @(R0,Rm),XDn (R0+ Rm) → XDn 1111nnn1mmmm0110 — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — —

FMOV XDm,@-Rn Rn - 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — —

FMOV XDm,@(R0+Rn) XDm → (R0 + Rn) 1111nnnnmmm10111 — —

FIPR FVm, FVn inner_product[FVm, FVn] → FR[n+3] 1111nnmm11101101 — —

FTRV XMTRX, FVn transform_vector[XMTRX, FVn] → FVn 1111nn0111111101 — —

FRCHG ~FPSCR.FR → FPSCR.FR 1111101111111101 — —

FSCHG ~FPSCR.SZ → FPSCR.SZ 1111001111111101 — —
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Section 8. Pipelining

The SH4 is a 2-ILP(Instruction-Level-Parallelism) superscalar pipelining microprocessor. The
execution of an instruction is pipelined and two instructions can be executed in parallel. The
execution cycles depend on the implementation of a processor. Definitions in this chapter may
not be applicable to other models in SH4 family.

8.1 Pipeline

Figure 8.1 shows base pipelines. Normally, a pipeline consists of five or six stages: instruction-
fetch(I), decode and register-read(D), execution(EX/SX/F0/F1/F2/F3), data-access(NA/MA),
write-back(S/FS). An instruction is executed as a combination of the base pipelines. Figure 8.2
shows the instruction execution patterns.

(1) General Pipeline
I D EX NA S

- instruction fetch - decode - operation - non-memory - write back
- issue    data access

- register read

- target-address calculation of PC-relative branch

(2) General Load/Store Pipeline
I D EX MA S

- instruction fetch - decode - address calculation - memory - write back
- issue    data access

- register read

(3) Special Pipeline
I D SX NA S

- instruction fetch - decode - operation - non-memory - write back
- issue    data access

- register read

(4) Special Load/Store Pipeline
I D SX MA S

- instruction fetch - decode - address calculation - memory - write back
- issue    data access

- register read

(5) Floating-Point Pipeline
I D F1 F2 FS

- instruction fetch - decode - computation 1 - computation 2 - computation 3
- issue - write back

- register read

(6) Floating-Point Extended-Pipeline
I D F0 F1 F2 FS

- instruction fetch - decode - computation 0 - computation 1 - computation 2 - computation 3
- issue - write back
- register read

(7) FDIV/FSQRT Pipeline
F3

- computation; some cycles are taken.

Figure 8.1  Base Pipelines
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(1) 1-step operation; 1 issue cycle
EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT
ADD*, CMP*, DIV*, DT, NEG*, SUB*,
AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA
NOP, CLRS, CLRT, SETS, SETT,
LDS to FPUL, STS from FPUL/FPSCR,
FLDI0, FLDI1, FMOV, FLDS, FSTS,
single/double precision FABS/FNEG

I D EX NA S

(2) load/store; 1 issue cycle
MOV.[BWL], FMOV.[SD], LDS.L FPUL, LDTLB, PREF,
STS.L from FPUL/FPSCR

I D EX MA S

(3) GBR-based load/store; 1 issue cycle
MOV.[BWL] @(d,GBR)

I D SX MA S

(4) JMP, RTS, BRAF; 2 issue cycles
I D EX NA S

D EX NA S

(5) TST.B; 3 issue cycles
I D SX MA S

D SX NA S
D SX NA S

(6) AND.B, OR.B, XOR.B; 4 issue cycles
I D SX MA S

D SX NA S
D SX NA S

D SX MA S

(7) TAS.B; 5 issue cycles
I D EX MA S

D EX MA S
D EX NA S

D EX NA S
D EX MA S

(8) RTE; 5 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

(9) SLEEP; 4 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S

Figure 8.2  Instruction Execution Patterns
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(10) OCBI; 1 issue cycle
I D EX MA S

MA

(11) OCBP, OCBWB; 1 issue cycle
I D EX MA S

MA
MA

MA
MA

(12) MOVCA.L; 1 issue cycle
I D EX MA S

MA
MA

MA
MA

MA
MA

(13) TRAPA; 7 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

(14) CR definition; 1 issue cycle
LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR

I D EX NA S
SX

SX

(15) LDC to GBR; 3 issue cycles
I D EX NA S

D SX
D SX

(16) LDC to SR; 4 issue cycles
I D EX NA S

D SX
D SX

D SX

(17) LDC.L to DBR/Rp_BANK/SSR/SPC/VBR; 1 issue cycle
I D EX MA S

SX
SX

(18) LDC.L to GBR; 3 issue cycles
I D EX MA S

D SX
D SX

Figure 8.2  Instruction Execution Patterns (continued)
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(19) LDC.L to SR; 4 issue cycles
I D EX MA S

D SX
D SX

D SX

(20) STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR; 2 issue cycles
I D SX NA S

D SX NA S

(21) STC from SGR; 3 issue cycles
I D SX NA S

D SX NA S
D SX NA S

(22) STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR; 2 issue cycles
I D SX NA S

D SX MA S

(23) STC.L from SGR; 3 issue cycles
I D SX NA S

D SX NA S
D SX MA S

(24) LDS to PR, JSR, BSRF; 2 issue cycles
I D EX NA S

D SX
SX

(25) LDS.L to PR; 2 issue cycles
I D EX MA S

D SX
SX

(26) STS from PR; 2 issue cycles
I D SX NA S

D SX NA S

(27) STS.L from PR; 2 issue cycles
I D SX NA S

D SX MA S

(28) MACH/L definition; 1 issue cycle
CLRMAC, LDS to MACH/L

I D EX NA S
F1

F1 F2 FS

(29) LDS.L to MACH/L; 1 issue cycle
I D EX MA S

F1
F1 F2 FS

(30) STS from MACH/L; 1 issue cycle
I D EX NA S

Figure 8.2  Instruction Execution Patterns (continued)
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(31) STS.L from MACH/L; 1 issue cycle
I D EX MA S

(32) LDS to FPSCR; 1 issue cycle
I D EX NA S

F1
F1

F1

(33) LDS.L to FPSCR; 1 issue cycle
I D EX MA S

F1
F1

F1

(34) Fixed point Multiplication; 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

I D EX NA S (CPU)
D EX NA S

f1 (FPU)
f1

f1
f1 F2 FS

(35) MAC.W, MAC.L; 2 issue cycles
I D EX MA S (CPU)

D EX MA S

f1 (FPU)
f1

f1
f1 F2 FS

(36) Single Precision FP Computation; 1 issue cycle
FADD, FLOAT, FMAC, FMUL, FSUB, FTRC, FRCHG, FSCHG,
FCMP/EQ, FCMP/GT

I D F1 F2 FS

(37) Single Precision FDIV/FSQRT; 1 issue cycle
I D F1 F2 FS

F3
F1 F2 FS

(38) Double Precision FP Computation 1; 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC

I D F1 F2 FS
d F1 F2 FS

(39) Double Precision FP Computation 2; 1 issue cycle
FADD, FMUL, FSUB

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS
F1 F2 FS

Figure 8.2  Instruction Execution Patterns (continued)
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(40) Double Precision FCMP; 2 issue cycles
FCMP/EQ, FCMP/GT

I D F1 F2 FS
D F1 F2 FS

(41) Double Precision FDIV/FSQRT; 1 issue cycle
FDIV, FSQRT

I D F1 F2 FS
d F1 F2

F3
F1 F2 FS

F1 F2 FS
F1 F2 FS

(42) FIPR; 1 issue cycle
I D F0 F1 F2 FS

(43) FTRV; 1 issue cycle
I D F0 F1 F2 FS

d F0 F1 F2 FS
d F0 F1 F2 FS

d F0 F1 F2 FS

[ Notes ]
?? : unable to be overlapped on a stage of the same kind,

  excepting when two instructions are executed in parallel.

D : locks D-stage.

d : only reads registers.

?? : locks, but no operation is performed.

f1 : able to be overlapped on another "f1," but 
   unable to be overlapped on another "F1."

Figure 8.2  Instruction Execution Patterns (continued)

8.2 Parallel-Executability

Instructions are categorized in six groups, depending on their utilization of internal functional
blocks, as shown in Table 8.1. Table 8.2 shows parallel-executability of two instructions in
terms of groups. For example, ADD categorized into EX and BRA in BR group can be executed
in parallel.
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Table 8.1  Instruction Groups

(1) MT group
CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #Imm,R0 CMP/HS Rm,Rn NOP
CMP/EQ Rm,Rn CMP/PL Rn SETT
CMP/GE Rm,Rn CMP/PZ Rn TST #Imm,R0
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn

(2) EX group
ADD #Imm,Rn MOVT Rn SHLL2 Rn
ADD Rm,Rn NEG Rm,Rn SHLL8 Rn
ADDC Rm,Rn NEGC Rm,Rn SHLR Rn
ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn
AND #Imm,R0 OR #Imm,R0 SHLR2 Rn
AND Rm,Rn OR Rm,Rn SHLR8 Rn
DIV0S Rm,Rn ROTCL Rn SUB Rm,Rn
DIV0U ROTCR Rn SUBC Rm,Rn
DIV1  Rm,Rn ROTL Rn SUBV Rm,Rn
DT Rn ROTR Rn SWAP.B Rm,Rn
EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn
EXTS.W Rm,Rn SHAL Rn XOR #Imm,R0
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn
MOV #Imm,Rn SHLL Rn
MOVA @(disp,PC),R0 SHLL16 Rn

(3) BR group
BF disp BRA disp BT disp
BF/S disp BSR disp BT/S disp

(4) LS group
FABS DRn FMOV.S @Rm+,FRn MOV.L R0,@(disp,GBR)
FABS FRn FMOV.S FRm,@(R0,Rn) MOV.L Rm,@(disp,Rn)
FLDI0 FRn FMOV.S FRm,@-Rn MOV.L Rm,@(R0,Rn)
FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMOV @(R0,Rm),DRn FNEG FRn MOV.W @(disp,GBR),R0
FMOV @(R0,Rm),XDn FSTS FPUL,FRn MOV.W @(disp,PC),Rn
FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0
FMOV @Rm,XDn MOV.B @(disp,GBR),R0 MOV.W @(R0,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 MOV.W @Rm,Rn
FMOV @Rm+,XDn MOV.B @(R0,Rm),Rn MOV.W @Rm+,Rn
FMOV DRm,@(R0,Rn) MOV.B @Rm,Rn MOV.W R0,@(disp,GBR)
FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W R0,@(disp,Rn)
FMOV DRm,@Rn MOV.B R0,@(disp,GBR) MOV.W Rm,@(R0,Rn)
FMOV DRm,DRn MOV.B R0,@(disp,Rn) MOV.W Rm,@-Rn
FMOV DRm,XDn MOV.B Rm,@(R0,Rn) MOV.W Rm,@Rn
FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L R0,@Rn
FMOV XDm,@(R0,Rn) MOV.B Rm,@Rn OCBI @Rn
FMOV XDm,@-Rm MOV.L @(disp,GBR),R0 OCBP @Rn
FMOV XDm,@Rn MOV.L @(disp,PC),Rn OCBWB @Rn
FMOV XDm,DRn MOV.L @(disp,Rm),Rn PREF @Rn
FMOV XDm,XDn MOV.L @(R0,Rm),Rn STS FPUL,Rn
FMOV.S @(R0,Rm),FRn MOV.L @Rm,Rn
FMOV.S @Rm,FRn MOV.L @Rm+,Rn
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Table 8.1  Instruction Groups (continued)

(5) FE group
FADD DRm,DRn FIPR FVm,FVn FSQRT DRn
FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC FR0,FRm,FRn FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL
FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRn FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

(6) CO group
AND.B #Imm,@(R0,GBR) LDS Rm,FPSCR STC SR,Rn
BRAF Rm LDS Rm,MACH STC SSR,Rn
BSRF Rm LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn
JMP @Rn LDTLB STC.L SSR,@-Rn
JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn
LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn
LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn
LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn
LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn
LDC Rm,SR OR.B #Imm,@(R0,GBR) STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn
LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn
LDC.L @Rm+,Rp_BANK STC DBR,Rn TAS.B @Rn
LDC.L @Rm+,SPC STC GBR,Rn TRAPA #Imm
LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #Imm,@(R0,GBR)
LDC.L @Rm+,SSR STC SGR,Rn XOR.B #Imm,@(R0,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Table 8.2  Parallel-Executability

2nd Instruction

MT EX BR LS FE CO

MT O O O O O X

EX O X O O O X

BR O O X O O X

LS O O O X O X

FE O O O O X X

CO X X X X X X

O: parallel-executable

X: not parallel-executable

1s
t I

ns
tr

uc
tio

n
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8.3 Execution Cycle and Pipeline Stall

There are three standard clocks in this processor: I-clock, B-clock, and P-clock. Each hardware
unit operates based on one of the three clocks as follows:

• I-clock: CPU, FPU, MMU, and Caches,

• B-clock: External Bus Controller, and

• P-clock: Peripheral Units.

The frequency ratios of the three clocks are determined with FRQCR(Frequency Control
Register). In this section, the machine cycle is based on the I-clock otherwise noted. For details
on FRQCR, refer to Section 10 “Clock Oscillation Circuits.”

The execution cycles of instructions are summarized in Table 8.3, where the penalty cycles due
to pipeline stall is not considered:

•  issue rate: interval between the issue of an instruction and that of the next instruction,

• latency: interval between the issue of an instruction and the generation of its
result(completion),

• instruction execution pattern(see Figure 8.2),

• locked pipeline stages,

• interval between the issue of an instruction and the beginning of locking, and

• lock time: period of locking in unit of machine cycle.

The execution sequence of instructions is expressed as a combination of the execution patterns
shown in Figure 8.2. Each instruction keeps machine cycles of its issue rate separate from its
next instruction. Normally, execution, data-access, and write-back stages cannot be overlapped
on the same stages of other instructions. It is the only exception of overlapping when two
instructions are executed parallel under parallel-executability condition. Refer to (a) through (d)
of Figure 8.3 for some simple cases.

Latency is the interval between issue and completion of an instruction, and it is also the interval
between executions of two instructions having any dependencies one another. When there is
dependency between two instructions fetched simultaneously, the second of the two is to be
stalled for the following cycles:

• (latency) cycles when a flow dependency(read-after-write) exists,

• (latency-2) cycles when an output dependency(write-after-write) exists, or

• 1 or 2 cycles when an anti-flow dependency(write-after-read) exists in case

(a) preceding (the first) instruction is FTRV(1 cycle), or

(b) double-precision FADD/FSUB/FMUL(2 cycles).
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Under the flow dependency, there are some exceptional extension/reduction of latency,
depending on the sequential combinations of instructions(Figure 8.3 (e)):

• when a floating-point(FP) computation is followed by a FP-register store, the latency of the
computation might be reduced 1 cycle,

• if there is a load of shift-amount just before SHAD/SHLD, the latency of the load is extended
1 cycle,

• in case an instruction with less than 2-cycle latency, which involves write-back to FP-
register, accompanies a double-precision FP instructions, FIPR, or FTRV, the latency of the
first instruction is extended to 2 cycles.

As for the pipeline stall due to flow dependency, there are some variety of its period originated
from the combinations of instructions with dependency, or timing of fetch. See also Figure 8.3
(e).

Concerning the stall cycles of an instruction with output dependency, the longest latency to the
last write-back of all destination operands should be applied as the substitution to “latency-2”
(see Figure 8.3 (f)). Stall due to an output dependency of FPSCR is double-sided. When two FP
operations reflects the result of them in the cause-field of FPSCR, there is no stall, whereas a 3-
cycle latency is seen between preceding FRCHG/FSCHG and an FP operation categorized LS-
type, such as FMOV.S FRm,@-Rn.

The anti-flow dependency can be occurred only between preceding double-precision
FADD/FMUL/FSUB or FTRV and following FMOV/FLDI0/FLDI1/FABS/FNEG. See Figure
8.3 (g).

In case an instruction in execution locks any resources, or functional blocks for primitive
operations, the following instruction(s) which happened to meet the locking have to be
stalled(Figure 8.3 (h)). This kind of stall can be compensated by inserting one or more
instructions independent of locked resources and making distance between interfering
instructions. For example, when a load and ADD referring the loaded value are in continuous
position, inserting three instructions with no dependency to the load removes the 2-cycle stall of
ADD. The software performance can be improved by such instruction scheduling.

Other penalties appear in occurrence of exceptions or external data accesses:

• instruction TLB miss, the penalty is 7 I-clocks,

• instruction access to external memory(instruction-cache miss, etc.),

• data access to external memory(operand-cache miss, etc.), the penalty is 2 I-clocks and 3 B-
clocks, or

• data access to memory-mapped control registers, the penalty is 2 I-clocks and 3 P-clocks.

During penalty cycles of instruction TLB miss and external instruction access, no instruction is
issued, but the executions of instructions having already issued are continued. The penalty for
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data accesses is pipeline freeze, that is, the executions of some uncompleted instructions are
interrupted till the reach of the requested data. The number of penalty cycles for instruction and
data accesses strongly depend on user’s memory subsystems. See Section 4 “Caches” and
Section 13 “Bus State Controller” for details.

(a) Serial Execution: non parallel-executable instructions

1 issue cycle SHAD in EX group and ADD in EX
SHAD R1,R2 I D EX NA S cannot be executed in parallel. So
ADD R3,R4 I D EX NA S only the first instruction, SHAD, is
next I D ... issued and the second, ADD, is

1 stall cycle stalled, which  is recoupled with the
next instruction.

(b) Parallel Execution: parallel-executable and no dependencies therein

1 issue cycle ADD in EX and MOV.L in LS can be
 ADD R2,R1 I D EX NA S executed in parallel, where same
MOV.L @R4,R5 I D EX MA S stages of the two instructions can be

overlapped one another.

(c) Issue Rate: multi-step instruction

4 issue cycles
AND.B #1,@(R0,GBR) I D SX MA S AND.B and MOV are fetched simul-

D SX NA S taneously, but MOV is stalled due to
D SX NA S resource-locking. After released,

D SX MA S MOV is re-fetched with the next.
MOV R1,R2 I i D E A S
next I ...

4 stall cycles

(d) Branch

BT/S L_far I D EX NA S Stall does not occur if branch is not
ADD R0,R1 I D EX NA S taken.
SUB R2,R3 I D EX NA S

2-cycle latency to I-stage of target If branch is taken, the I-stage of the
BT/S L_far I D EX NA S target is stalled for the period of
ADD R0,R1 I D EX NA S latency. This stall can be coverd with

1 stall cycle delay-slot instruction which is not
L_far I D ... parallel-executable with the branch.

BT L_skip I D EX NA S Even if BT/BF is taken, the I-stage
ADD #1,R0 I D - - - of the target is not stalled in case of
L_skip: I D ... zero displacement.

no stall

Figure 8.3 Examples of Pipeline Execution
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(e) flow dependency
Zero-cycle latency The following instruction, ADD, is not

MOV R0,R1 I D EX NA S stalled when it runs after instructions
ADD R2,R1 I D EX NA S with zero-cycle latency, even if there

is a flow dependency.

1-cycle latency
ADD R2,R1 I D EX NA S ADD and MOV.L are not executed in
MOV.L @R1,R1 I i D EX MA S parallel, since MOV.L refers the result

next I ... of ADD as its target address.

1 stall cycle

2-cycle latency ADD is stalled for only 1 cycle despite
MOV.L @R1,R1 I D EX MA S of 2-cycle latency of MOV.L. Because
ADD R0,R1 I D EX NA S MOV.L and ADD are not fetched
next I ... 1 stall cycle simultaneously in this case.

2-cycle latency
1-cycle extension With a flow dependency between a

MOV.L @R1,R1 I D EX MA S load and the shift amount of SHAD/
SHAD R1,R2 I D d EX NA S SHLD, latency of the load is extended
next I ... to 3 cycles.

2 stall cycles

4-cycle latency for FPSCR
FADD FR1,FR2 I D F1 F2 FS
STS FPUL,R1 I D EX NA S
STS FPSCR,R2 I D EX NA S

2 stall cycle

7-cycle latency for upper FR.
8-cycle latency for lower FR

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS write FR3
F1 F2 FS write FR2

FMOV FR3,FR5 I D EX NA S
FMOV FR2,FR4 I D EX NA S

3-cycle latency for upper FR
4-cycle latency for lower FR

FLOAT FPUL,DR0 I D F1 F2 FS write FR1 The latency of FLOAT is decreased
d F1 F2 FS write FR0 1 cycle, only if a store of upper FR

FMOV.S FR1,@-R15 I D EX MA S follows. This reduction is not applied

to lower FR store.
zero-cycle latency

3-cycle extension
FLDI1 FR3 I D EX NA S
FIPR FV0,FV4 I D d F0 F1 F2 FS

3 stall cycles

2-cycle latency
1-cycle extension

FMOV @R1,XD14 I D EX MA S
FTRV XMTRX,FV0 I D d F0 F1 F2 FS

d F0 F1 F2 FS
3 stall cycles d F0 F1 F2 FS

d F0 F1 F2 FS

Figure 8.3 Examples of Pipeline Execution (continued)
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(e) flow dependency (continued)

effective 1-cycle latency for continuous LDS/FLOAT
LDS R0,FPUL I D EX NA S
FLOAT FPUL,FR0 I D F1 F2 FS
LDS R1,FPUL I D EX NA S
FLOAT FPUL,FR1 I D F1 F2 FS

effective 1-cycle latency for continuous FTRC/STS
FTRC FR0,FPUL I D F1 F2 FS
STS FPUL,R0 I D EX NA S
FTRC FR1,FPUL I D F1 F2 FS
STS FPUL,R1 I D EX NA S

(f) output dependency

11-cycle latency
FSQRT FR4 I D F1 F2 FS

F3
F1 F2 FS

FMOV FR0,FR4 I D F1 F2 FS
9 stall cycles = latency(11) - 2 The registers are written-back in

programmed order.

7-cycle latency for upperr FR.
8-cycle latency for lower FR

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS write FR3
F1 F2 FS write FR2

FMOV FR0,FR3 I D EX NA S
6 stall cycles = longest_latency(8) - 2

(g) anti-flow dependency

FTRV XMTRX,FV0 I D F0 F1 F2 FS
d F0 F1 F2 FS

d F0 F1 F2 FS
d F0 F1 F2 FS

FMOV @R1,XD0 I D EX MA S
1 stall cycle

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS
F1 F2 FS

FMOV FR4,FR1 I D EX NA S
2 stall cycles

Figure 8.3 Examples of Pipeline Execution (continued)
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(h) Resource Confrict

#1 #2 #3 ... #10 #11 #12
latency

1 cycle/issue
FDIV FR7 I D F1 F2 FS F1-stage locked for 1 cycle

... F3
F1 F2 FS

FMAC FR0,FR8,FR9 I D F1 F2 FS
FMAC FR0,FR10,FR11 I D F1 F2 FS
FMAC FR0,FR12,FR13 I D F1 F2 FS
FMAC FR0,FR14,FR15 I D F1 F2 FS

1 stall cycle(resource conflict of F1-stage)

FIPR FV8,FV0 I D F0 F1 F2 FS
FADD FR15,FR4 I D F1 F2 FS

1 stall cycle

LDS.L @R15+,PR I D EX NA S
D SX

SX
STC GBR,R2 I D SX NA S

D SX NA S
3 stall cycles

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS
F1 F2 FS

MAC.W @R1+,@R2+ I D EX MA S
stall f1

D EX MA S
f1

F1 F2 FS
F1 F2 FS

MAC.W @R1+,@R2+ I D EX MA S
f1
D EX MA S

f1
f1 F2 FS

f1 F2 FS "f1" stage can be overlapped on
MAC.W @R1+,@R2+ I D EX MA S preceding "f1", whereas "F1" is not

stall f1 allowed to overlap on "f1."
D EX MA S

f1
f1 F2 FS

f1 F2 FS
FADD DR4,DR6 I D F1 F2 FS

stall stall d F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

F1 ...

Figure 8.3 Examples of Pipeline Execution (continued)
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Table 8.3 Execution Cycles

Lock

functional

category # instruction

inst

group

issue

rate latency

exec

pattern stage begin cycle

Data Tranfer

Instruction

1 EXTS.B Rm,Rn EX 1 1 #1 - - -

2 EXTS.W Rm,Rn EX 1 1 #1 - - -

3 EXTU.B Rm,Rn EX 1 1 #1 - - -

4 EXTU.W Rm,Rn EX 1 1 #1 - - -

5 MOV Rm,Rn MT 1 0 #1 - - -

6 MOV #Imm,Rn EX 1 1 #1 - - -

7 MOVA @(disp,PC),R0 EX 1 1 #1 - - -

8 MOV.W @(disp,PC),Rn LS 1 2 #2 - - -

9 MOV.L @(disp,PC),Rn LS 1 2 #2 - - -

10 MOV.B @Rm,Rn LS 1 2 #2 - - -

11 MOV.W @Rm,Rn LS 1 2 #2 - - -

12 MOV.L @Rm,Rn LS 1 2 #2 - - -

13 MOV.B @Rm+,Rn LS 1 1/2 #2 - - -

14 MOV.W @Rm+,Rn LS 1 1/2 #2 - - -

15 MOV.L @Rm+,Rn LS 1 1/2 #2 - - -

16 MOV.B @(disp,Rm),R0 LS 1 2 #2 - - -

17 MOV.W @(disp,Rm),R0 LS 1 2 #2 - - -

18 MOV.L @(disp,Rm),Rn LS 1 2 #2 - - -

19 MOV.B @(R0,Rm),Rn LS 1 2 #2 - - -

20 MOV.W @(R0,Rm),Rn LS 1 2 #2 - - -

21 MOV.L @(R0,Rm),Rn LS 1 2 #2 - - -

22 MOV.B @(disp,GBR),R0 LS 1 2 #3 - - -

23 MOV.W @(disp,GBR),R0 LS 1 2 #3 - - -

24 MOV.L @(disp,GBR),R0 LS 1 2 #3 - - -

25 MOV.B Rm,@Rn LS 1 1 #2 - - -

26 MOV.W Rm,@Rn LS 1 1 #2 - - -

27 MOV.L Rm,@Rn LS 1 1 #2 - - -
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Table 8.3 Execution Cycles (continued)

Lock

functional

category # instruction

inst

group

issue

rate latency

exec

pattern stage begin cycle

28 MOV.B Rm,@-Rn LS 1 1/1 #2 - - -

29 MOV.W Rm,@-Rn LS 1 1/1 #2 - - -

30 MOV.L Rm,@-Rn LS 1 1/1 #2 - - -

31 MOV.B R0,@(disp,Rn) LS 1 1 #2 - - -

32 MOV.W R0,@(disp,Rn) LS 1 1 #2 - - -

33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 - - -

34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 - - -

35 MOV.W Rm,@(R0,Rn) LS 1 1 #2 - - -

36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 - - -

37 MOV.B R0,@(disp,GBR) LS 1 1 #3 - - -

38 MOV.W R0,@(disp,GBR) LS 1 1 #3 - - -

39 MOV.L R0,@(disp,GBR) LS 1 1 #3 - - -

40 MOVCA.L R0,@Rn LS 1 3 ~ 7 #12 MA 4 3~7

41 MOVT Rn EX 1 1 #1 - - -

42 OCBI @Rn LS 1 1 ~ 2 #10 MA 4 1~2

43 OCBP @Rn LS 1 1 ~ 5 #11 MA 4 1~5

44 OCBWB @Rn LS 1 1 ~ 5 #11 MA 4 1~5

45 PREF @Rn LS 1 1 #2 - - -

46 SWAP.B Rm,Rn EX 1 1 #1 - - -

47 SWAP.W Rm,Rn EX 1 1 #1 - - -

48 XTRCT Rm,Rn EX 1 1 #1 - - -

Fixed Point

Arithmetic

Instruction

49 ADD Rm,Rn EX 1 1 #1 - - -

50 ADD #Imm,Rn EX 1 1 #1 - - -

51 ADDC Rm,Rn EX 1 1 #1 - - -

52 ADDV Rm,Rn EX 1 1 #1 - - -

53 CMP/EQ #Imm,R0 MT 1 1 #1 - - -

54 CMP/EQ Rm,Rn MT 1 1 #1 - - -

55 CMP/GE Rm,Rn MT 1 1 #1 - - -
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Table 8.3 Execution Cycles (continued)

lock

functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

56 CMP/GT Rm,Rn MT 1 1 #1 - - -

57 CMP/HI Rm,Rn MT 1 1 #1 - - -

58 CMP/HS Rm,Rn MT 1 1 #1 - - -

59 CMP/PL Rn MT 1 1 #1 - - -

60 CMP/PZ Rn MT 1 1 #1 - - -

61 CMP/STR Rm,Rn MT 1 1 #1 - - -

62 DIV0S Rm,Rn EX 1 1 #1 - - -

63 DIV0U EX 1 1 #1 - - -

64 DIV1  Rm,Rn EX 1 1 #1 - - -

65 DMULS.L Rm,Rn CO 2 4 #34 F1 4 2

66 DMULU.L Rm,Rn CO 2 4 #34 F1 4 2

67 DT Rn EX 1 1 #1 - - -

68 MAC.L @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

69 MAC.W @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

70 MUL.L Rm,Rn CO 2 4/4 #34 F1 4 2

71 MULS.W Rm,Rn CO 2 4/4 #34 F1 4 2

72 MULU.W Rm,Rn CO 2 4/4 #34 F1 4 2

73 NEG Rm,Rn EX 1 1 #1 - - -

74 NEGC Rm,Rn EX 1 1 #1 - - -

75 SUB Rm,Rn EX 1 1 #1 - - -

76 SUBC Rm,Rn EX 1 1 #1 - - -

77 SUBV Rm,Rn EX 1 1 #1 - - -

Logical
Instruction

78 AND Rm,Rn EX 1 1 #1 - - -

79 AND #Imm,R0 EX 1 1 #1 - - -

80 AND.B #Imm,@(R0,GB
R)

CO 4 4 #6 - - -

81 NOT Rm,Rn EX 1 1 #1 - - -

82 OR Rm,Rn EX 1 1 #1 - - -

83 OR #Imm,R0 EX 1 1 #1 - - -

84 OR.B #Imm,@(R0,GB
R)

CO 4 4 #6 - - -
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Table 8.3 Execution Cycles (continued)

lock

functional

category # instruction

inst

group

issue

rate latency

exec

pattern stage begin cycle

85 TAS.B @Rn CO 5 5 #7 - - -

86 TST Rm,Rn MT 1 1 #1 - - -

87 TST #Imm,R0 MT 1 1 #1 - - -

88 TST.B #Imm,@(R0,GB

R)

CO 3 3 #5 - - -

89 XOR Rm,Rn EX 1 1 #1 - - -

90 XOR #Imm,R0 EX 1 1 #1 - - -

91 XOR.B #Imm,@(R0,GB

R)

CO 4 4 #6 - - -

Shift

Instruction

92 ROTL Rn EX 1 1 #1 - - -

93 ROTR Rn EX 1 1 #1 - - -

94 ROTCL Rn EX 1 1 #1 - - -

95 ROTCR Rn EX 1 1 #1 - - -

96 SHAD Rm,Rn EX 1 1 #1 - - -

97 SHAL Rn EX 1 1 #1 - - -

98 SHAR Rn EX 1 1 #1 - - -

99 SHLD Rm,Rn EX 1 1 #1 - - -

100 SHLL Rn EX 1 1 #1 - - -

101 SHLL2 Rn EX 1 1 #1 - - -

102 SHLL8 Rn EX 1 1 #1 - - -

103 SHLL16 Rn EX 1 1 #1 - - -

104 SHLR Rn EX 1 1 #1 - - -

105 SHLR2 Rn EX 1 1 #1 - - -

106 SHLR8 Rn EX 1 1 #1 - - -

107 SHLR16 Rn EX 1 1 #1 - - -

Branch

Instruction

108 BF disp BR 1 2( or 1) #1 - - -

109 BF/S disp BR 1 2( or 1) #1 - - -
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Table 8.3 Execution Cycles (continued)

lock

functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

110 BT disp BR 1 2( or 1) #1 - - -

111 BT/S disp BR 1 2( or 1) #1 - - -

112 BRA disp BR 1 2 #1 - - -

113 BRAF Rm CO 2 3 #4 - - -

114 BSR disp BR 1 2 #14 SX 3 2

115 BSRF Rm CO 2 3 #24 SX 3 2

116 JMP @Rn CO 2 3 #4 - - -

117 JSR @Rn CO 2 3 #24 SX 3 2

118 RTS CO 2 3 #4 - - -

System Control
Instruction

119 NOP MT 1 0 #1 - - -

120 CLRMAC CO 1 3 #28 F1 3 2

121 CLRS CO 1 1 #1 - - -

122 CLRT MT 1 1 #1 - - -

123 SETS CO 1 1 #1 - - -

124 SETT MT 1 1 #1 - - -

125 TRAPA #Imm CO 7 7 #13 - - -

126 RTE CO 5 5 #8 - - -

127 SLEEP CO 4 4 #9 - - -

128 LDTLB CO 1 1 #2 - - -

129 LDC Rm,DBR CO 1 3 #14 SX 3 2

130 LDC Rm,GBR CO 3 3 #15 SX 3 2

131 LDC Rm,Rp_BANK CO 1 3 #14 SX 3 2

132 LDC Rm,SR CO 4 4 #16 SX 3 2

133 LDC Rm,SSR CO 1 3 #14 SX 3 2

134 LDC Rm,SPC CO 1 3 #14 SX 3 2

135 LDC Rm,VBR CO 1 3 #14 SX 3 2

136 LDC.L @Rm+,DBR CO 1 1/3 #17 SX 3 2

137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2

138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2

139 LDC.L @Rm+,SR CO 4 4/4 #19 SX 3 2
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Table 8.3 Execution Cycles (continued)

lock

functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

140 LDC.L @Rm+,SSR CO 1 1/3 #17 SX 3 2

141 LDC.L @Rm+,SPC CO 1 1/3 #17 SX 3 2

142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2

143 LDS Rm,MACH CO 1 3 #28 F1 3 2

144 LDS Rm,MACL CO 1 3 #28 F1 3 2

145 LDS Rm,PR CO 2 3 #24 SX 3 2

146 LDS.L @Rm+,MACH CO 1 1/3 #29 F1 3 2

147 LDS.L @Rm+,MACL CO 1 1/3 #29 F1 3 2

148 LDS.L @Rm+,PR CO 2 2/3 #25 SX 3 2

149 STC DBR,Rn CO 2 2 #20 - - -

150 STC SGR,Rn CO 3 3 #21 - - -

151 STC GBR,Rn CO 2 2 #20 - - -

152 STC Rp_BANK,Rn CO 2 2 #20 - - -

153 STC SR,Rn CO 2 2 #20 - - -

154 STC SSR,Rn CO 2 2 #20 - - -

155 STC SPC,Rn CO 2 2 #20 - - -

156 STC VBR,Rn CO 2 2 #20 - - -

157 STC.L DBR,@-Rn CO 2 2/2 #22 - - -

158 STC.L SGR,@-Rn CO 3 3/3 #23 - - -

159 STC.L GBR,@-Rn CO 2 2/2 #22 - - -

160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 - - -

161 STC.L SR,@-Rn CO 2 2/2 #22 - - -

162 STC.L SSR,@-Rn CO 2 2/2 #22 - - -

163 STC.L SPC,@-Rn CO 2 2/2 #22 - - -

164 STC.L VBR,@-Rn CO 2 2/2 #22 - - -
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Table 8.3 Execution Cycles (continued)

lock

functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

165 STS MACH,Rn CO 1 3 #30 - - -

166 STS MACL,Rn CO 1 3 #30 - - -

167 STS PR,Rn CO 2 2 #26 - - -

168 STS.L MACH,@-Rn CO 1 1/1 #31 - - -

169 STS.L MACL,@-Rn CO 1 1/1 #31 - - -

170 STS.L PR,@-Rn CO 2 2/2 #27 - - -

Single-
Precision
Floating-Point
Instruction

171 FLDI0 FRn LS 1 0 #1 - - -

172 FLDI1 FRn LS 1 0 #1 - - -

173 FMOV FRm,FRn LS 1 0 #1 - - -

174 FMOV.S @Rm,FRn LS 1 2 #2 - - -

175 FMOV.S @Rm+,FRn LS 1 1/2 #2 - - -

176 FMOV.S @(R0,Rm),FRn LS 1 2 #2 - - -

177 FMOV.S FRm,@Rn LS 1 1 #2 - - -

178 FMOV.S FRm,@-Rn LS 1 1/1 #2 - - -

179 FMOV.S FRm,@(R0,Rn) LS 1 1 #2 - - -

180 FLDS FRm,FPUL LS 1 0 #1 - - -

181 FSTS FPUL,FRn LS 1 0 #1 - - -

182 FABS FRn LS 1 0 #1 - - -

183 FADD FRm,FRn FE 1 3/4 #36 - - -

184 FCMP/EQ FRm,FRn FE 1 2/4 #36 - - -

185 FCMP/GT FRm,FRn FE 1 2/4 #36 - - -

186 FDIV FRm,FRn FE 1 12/13 #38 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 F1 2 2

188 FMAC FR0,FRm,FRn FE 1 3/4 #36 - - -

189 FMUL FRm,FRn FE 1 3/4 #36 - - -

190 FNEG FRn LS 1 0 #1 - - -

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1
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Table 8.3 Execution Cycles (continued)

lock

functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

192 FSUB FRm,FRn FE 1 3/4 #36 - - -

193 FTRC FRm,FPUL FE 1 3/4 #36 - - -

194 FMOV DRm,DRn LS 1 0 #1 - - -

195 FMOV @Rm,DRn LS 1 2 #2 - - -

196 FMOV @Rm+,DRn LS 1 1/2 #2 - - -

197 FMOV @(R0,Rm),DRn LS 1 2 #2 - - -

198 FMOV DRm,@Rn LS 1 1 #2 - - -

199 FMOV DRm,@-Rn LS 1 1/1 #2 - - -

200 FMOV DRm,@(R0,Rn) LS 1 1 #2 - - -

Double-
Precision
Floating-Point
Instruction

201 FABS DRn LS 1 0 #1 - - -

202 FADD DRm,DRn FE 1 (7,8)/9 #39 F1 2 6

203 FCMP/EQ DRm,DRn CO 2 3/5 #40 F1 2 2

204 FCMP/GT DRm,DRn CO 2 3/5 #40 F1 2 2

205 FCNVDS DRm,FPUL FE 1 (3,4)/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

207 FDIV DRm,DRn FE 23 (24,25)/26 #41 F3 2 21

F1 20 3

208 FLOAT FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

209 FMUL DRm,DRn FE 1 (7,8)/9 #39 F1 2 6

210 FNEG DRn LS 1 0 #1 - - -

211 FSQRT DRn FE 22 (23,24)/25 #41 F3 2 20

F1 19 3

212 FSUB DRm,DRn FE 1 (7,8)/9 #39 F1 2 6

213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2

FPU System
Control
Instruction

214 LDS Rm,FPUL LS 1 1 #1 - - -

215 LDS Rm,FPSCR CO 1 4 #32 F1 3 3

216 LDS.L @Rm+,FPUL CO 1 1/2 #2 - - -
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Table 8.3 Execution Cycles (continued)

lock
functional
category # instruction

inst
group

issue
rate latency

exec
pattern stage begin cycle

217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3

218 STS FPUL,Rn LS 1 3 #1 - - -

219 STS FPSCR,Rn CO 1 3 #1 - - -

220 STS.L FPUL,@-Rn CO 1 1/1 #2 - - -

221 STS.L FPSCR,@-Rn CO 1 1/1 #2 - - -

Graphics
Acceleration
Instruction

222 FMOV DRm,XDn LS 1 0 #1 - - -

223 FMOV XDm,DRn LS 1 0 #1 - - -

224 FMOV XDm,XDn LS 1 0 #1 - - -

225 FMOV @Rm,XDn LS 1 2 #2 - - -

226 FMOV @Rm+,XDn LS 1 1/2 #2 - - -

227 FMOV @(R0,Rm),XDn LS 1 2 #2 - - -

228 FMOV XDm,@Rn LS 1 1 #2 - - -

229 FMOV XDm,@-Rm LS 1 1/1 #2 - - -

230 FMOV XDm,@(R0,Rn) LS 1 1 #2 - - -

231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1

232 FRCHG FE 1 1 #36 - - -

233 FSCHG FE 1 1 #36 - - -

234 FTRV XMTRX,FVn FE 1 (5,5,6,7)/8 #43 F0 2 4

F1 3 4

Notes:
1. inst group: instruction group (see Table 8.2).

2. latency 'L1/L2...': latencies corresponding each definitions, including FPSCR.
[Example] MOV.B @Rm+, Rn "1/2": the latency for Rm is 1 cycle, and the latency for Rn is 2 cycles.

3. latency of branch: interval until the target instruction is fetched.

4. latency of conditional branch "2( or 1)": the latency is 2 for nonzero displacement, while it is 1 for zero.

5. latency of double-precision floating-point instruction "(L1,L2)/L3": L1 is the latency for FR[n+1], L2 for FR[n], and
L3 for FPSCR.

6. latency of FTRV "(L1,L2,L3,L4)/L5": L1 is for FR[n], L2 for FR[n+1], L3 for FR[n+2], L4 for FR[n+3], and L5 is for
FPSCR.

7. exec pattern: the pattern number of the instruction execution (see Figure 8.2).

8. lock/stage: stage locked by the instruction.

9. lock/begin: beginning cycle of the locking; 1 is the first D-stage of the instruction.

10. lock/cycle: number of cycles locked.

Exceptions:
1. When a floating-point computation instruction is followed by a floating-point store, the latency of the computation

is reduced 1 cycle.

2. When the preceding instruction loads the shift amount of the following SHAD/SHLD, the latency of the load is
extended 1 cycle.

3. When any instructions with less than 2-cycle latency is followed by a double-precision floating-point instructions,
FIPR, or FTRV, the latency of the first is extended to 2 cycles.
[Example] In case of "FMOV FR4,FR0" and "FIPR FV0,FV4," FIPR is stalled for 2 cycles.
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Section 9   Power-Down Modes

9.1 Overview

In the power-down modes, some of the on-chip supporting modules and the CPU functions are
halted, enabling power consumption to be reduced.

9.1.1 Types of Power-Down Modes

The following power-down modes and functions are provided:

• Sleep mode

• Standby mode

• Module standby function (DMAC,TMU, RTC, and SCI/SCIF on-chip supporting modules)

Table 9.1 shows the conditions for entering these modes from the program execution state, the
status of the CPU and supporting modules in each mode, and the method of exiting each mode.
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Table 9.1 Power-Down Modes

Status

Power-
Down
Mode

Entering
Conditions CPG CPU

On-Chip
Memory

On-Chip
Supporting
Modules Pins

External
Memory

Exiting
Method

Sleep SLEEP
instruction
executed
while STBY
bit is 0 in
STBCR

Operating Halted
(registers
held)

Held Operating Held Refreshing • Interrupt

• Reset

Standby SLEEP
instruction
executed
while STBY
bit is 1 in
STBCR

Halted Halted
(registers
held)

Held Halted* Held Self-
refreshing

• Interrupt

• Reset

Module
standby

Setting MSTP
bit to 1 in
STBCR

Operating Operating Held Specified
modules
halted*

Held Refreshing • Clearing

MSTP

bit to 0

• Reset

Note: * The RTC operates when the START bit in RCR2 is 1 (see section 12).
The TMU performs count operations when the RTC output clock is selected as the

counter input clock (see section 11).

9.1.2 Register Configuration

Table 9.2 shows the configuration of the register used for power-down mode control.

Table 9.2 Power-Down Mode Register

Name Abbreviation R/W
Initial
Value P4 Address

AREA7
Address Access Size

Standby control
register

STBCR R/W H'00 H’FFC00004 H'1FC00004 8
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9.2 Register Descriptions

9.2.1 Standby Control Register (STBCR)

The standby control register (STBCR) is an 8-bit readable/writable register that specifies the
power-down mode status. It is initialized to H'00 by a power-on reset via the 5(6(7 pin or due
to watchdog timer overflow.

Bit: 7 6 5 4 3 2 1 0

STBY PHZ PPU MSTP4 MSTP3 MSTP2 MSTP1 MSTP0

Initial value: 0 0 0 0 0 0 0 0

R/W: R/W R/W R/W R/W R/W R/W R/W R/W

• Bit 7—Standby (STBY): Specifies a transition to standby mode.

Bit 7: STBY Description

0 Transition to sleep mode on execution of SLEEP instruction (Initial value)

1 Transition to standby mode on execution of SLEEP instruction

• Bit 6—Supporting Module Pin High Impedance Control (PHZ): Controls the state of
supporting module related pins in standby mode.  When the PHZ bit is set to 1, supporting
module related pins go to the high-impedance state in standby mode.

For the relevant pins, see section 9.2.2, Supporting Module Pin High Impedance Control.

Bit 6: PHZ Description

0 Supporting module related pins are in normal state  (Initial value)

1 Supporting module related pins go to high-impedance state

• Bit 5—Supporting Module Pin Pull-Up Control (PPU): Controls the state of supporting
module related pins.  When the PPU bit is cleared to 0 and supporting module related pins go
to the input or high-impedance state, these pins are pulled up.

For the relevant pins, see section 9.2.3, Supporting Module Pin Pull-Up Control.

Bit 5: PPU Description

0 Supporting module related pins are pulled up (Initial value)

1 Supporting module related pins are in normal state
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• Bit 4—Module Stop 4 (MSTP4): Specifies stopping of the clock supply to the DMAC.  The
clock supply to the DMAC is stopped when the MSTP4 bit is set to 1.  When DMA transfer
operated, the MSTP4 bit is set to 1 after the transfer is stopped.  For operating DMA transfer
after setting MSTP4 bit to 1, second DMA setting is required.

Bit 4: MSTP4 Description

0 DMAC operates (Initial value)

1 DMAC clock supply is stopped

• Bit 3—Module Stop 3 (MSTP3): Specifies stopping of the clock supply to serial
communication interface channel 2 (SCIF) among the on-chip supporting modules. The
clock supply to SCIF is stopped when the MSTP3 bit is set to 1.

Bit 3: MSTP3 Description

0 SCIF operates (Initial value)

1 SCIF clock supply is stopped

• Bit 2—Module Stop 2 (MSTP2): Specifies stopping of the clock supply to the timer unit
(TMU) among the on-chip supporting modules. The clock supply to the TMU is stopped
when the MSTP2 bit is set to 1.

Bit 2: MSTP2 Description

0 TMU operates (Initial value)

1 TMU clock supply is stopped

• Bit 1—Module Stop 1 (MSTP1): Specifies stopping of the clock supply to the realtime clock
(RTC) among the on-chip supporting modules. The clock supply to the RTC is stopped when
the MSTP1 bit is set to 1. When the clock supply is stopped, RTC registers cannot be
accessed but the counters continue to operate.

Bit 1: MSTP1 Description

0 RTC operates (Initial value)

1 RTC clock supply is stopped

• Bit 0—Module Stop 0 (MSTP0): Specifies stopping of the clock supply to serial
communication interface channel 1 (SCI) among the on-chip supporting modules. The clock
supply to SCI is stopped when the MSTP0 bit is set to 1.

Bit 0: MSTP0 Description

0 SCI operates (Initial value)

1 SCI clock supply is stopped
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9.2.2 Supporting Module Pin High Impedance Control

When bit 6 in the standby control register (STBCR) is set to 1, supporting module related pins
go to the high-impedance state in standby mode.

(1)  Relevant pins

1. SCI/SCIF related pins

MD0/SCKMD1/TXD2MD2/RXD2MD7/TXDMD8/RTS2SCK2/05(6(7
RXDCTS2

2. DMAC related pins

'5(4��'5(4�DACK0DACK1DRAK1DRAK0

(2)  Other information

High impedance control is not performed when the above pins are in the output state.

9.2.3 Supporting Module Pin Pull-Up Control

When bit 5 in the standby control register (STBCR) is cleared to 0, supporting module related
pins are pulled up.

(1)  Relevant pins

1. SCI/SCIF related pins

MD0/SCKMD1/TXD2MD2/RXD2MD7/TXDMD8/RTS2SCK2/05(6(7
RXDCTS2

2. DMAC related pins

�'5(4��'5(4�DACK0DACK1DRAK1DRAK0

3. TMU related pins

TCLK

(2)  Other information

The above pins are pulled up when in the input or high-impedance state.
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9.3 Sleep Mode

9.3.1 Transition to Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0, the chip
switches from the program execution state to sleep mode. After execution of the SLEEP
instruction, the CPU halts but its register contents are retained. The on-chip supporting modules
continue to operate, and the clock continues to be output from the CKIO pin.

In sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the
STATUS0 pin.

9.3.2 Exit from Sleep Mode

Sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip supporting module) or a
reset. In sleep mode, interrupts are accepted even if the BL bit in the SR register is 1. If
necessary, the SPC and SSR should be saved to the stack before executing the SLEEP
instruction.

Exit by Interrupt:  When an NMI, IRL, or on-chip supporting module interrupt is generated,
sleep mode is exited and interrupt exception handling is executed. The code corresponding to the
interrupt source is set in the INTEVT register.

Exit by Reset: Sleep mode is exited by means of a power-on reset via the 5(6(7 pin, a manual
reset, or a power-on reset or manual reset executed when the watchdog timer overflows.

9.4 Standby Mode

9.4.1 Transition to Standby Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is set to 1, the chip switches
from the program execution state to standby mode. In standby mode, the on-chip supporting
modules halt as well as the CPU. Clock output from the CKIO pin is also stopped.

The CPU and cache register contents are retained. Some on-chip supporting module registers are
initialized. The state of the supporting module registers in standby mode is shown in table 9.4.
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Table 9.4 State of Registers in Standby Mode

Module Initialized Registers Registers That Retain Their Contents

Interrupt controller — All registers

Break controller — All registers

Bus state controller — All registers

On-chip oscillation circuits — All registers

Timer unit TSTR register* All registers except TSTR

Realtime clock — All registers

Note: *   Not initialized when the realtime clock (RTC) is in use (see section 11).
When a operating mode is transfered to standby mode, end the DMA transfer.  There is no

guarantee on the transfer result when a operating mode is transfered to standby mode
while DMA transfer.

The procedure for a transition to standby mode is shown below.

1. Clear the TME bit in the WDT timer control register (WTCSR) to 0, and stop the WDT.

Set the initial value for the up-count in the WDT timer counter (WTCNT), and set the clock
to be used for the up-count in bits CKS2–CKS0 in the WTCSR register.

2. Set the STBY bit in the STBCR register to 1, then execute a SLEEP instruction.

3. When standby mode is entered and the chip’s internal clock stops, a low-level signal is
output at the STATUS1 pin, and a high-level signal at the STATUS0 pin.

9.4.2 Exit from Standby Mode

Standby mode is exited by means of an interrupt (NMI, IRL, or on-chip supporting module) or a
reset via the 5(6(7 pin.

Exit by Interrupt:  A hot start can be performed by means of the on-chip WDT. When an NMI,
IRL* 1, or on-chip supporting module (except interval timer)*2 interrupt is detected, the WDT
starts counting. After the count overflows, clocks are supplied to the entire chip, standby mode is
exited, and both the STATUS1 and the STATUS0 pin go low. Interrupt exception handling is
then executed, and the code corresponding to the interrupt source is set in the INTEVT register.
In standby mode, interrupts are accepted even if the BL bit in the SR register is 1, and so, if
necessary, the SPC and SSR should be saved to the stack before executing the SLEEP
instruction.

The phase of the CKIO pin clock output may be unstable immediately after an interrupt is
detected, until standby mode is exited.
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Notes: 1. Only when the RTC is used, standby mode can be exited by means of IRL3–IRL0
(when the IRL3–IRL0 level is higher than the SR register I3–I0 mask level).

2. Standby mode can be exited by means of an RTC interrupt or a TMU interrupt (when
operating on the RTC clock).

Exit by Reset: Standby mode is exited by means of a reset (power-on or manual) via the 5(6(7
pin. The 5(6(7 pin should be held low until clock oscillation stabilizes. The internal clock
continues to be output at the CKIO pin.

9.4.3 Clock Pause Function

In standby mode, it is possible to stop or change the frequency of the clock input from the
EXTAL pin. This function is used as follows.

1. Enter standby mode following the transition procedure described above.

2. When standby mode is entered and the chip’s internal clock stops, a low-level signal is
output at the STATUS1 pin, and a high-level signal at the STATUS0 pin.

3. The input clock is stopped, or its frequency changed, after the STATUS1 pin goes low and
the STATUS0 pin high.

4. When the frequency is changed, input an NMI or IRL interrupt after the change. When the
clock is stopped, input an NMI or IRL interrupt after applying the clock.

5. After the time set in the WDT, clock supply begins inside the chip, the STATUS1 and
STATUS0 pins both go low, and operation is resumed from interrupt exception handling.

9.5 Module Standby Function

9.5.1 Transition to Module Standby Function

Setting the MSTP4–MSTP0 bits in the standby control register to 1 enables the clock supply to
the corresponding on-chip supporting modules to be halted. Use of this function allows power
consumption in sleep mode to be further reduced.

In the module standby state, the on-chip supporting module external pins retain their states prior
to halting of the modules. Most registers retain their states prior to halting of the modules.
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Bit Description

MSTP4 0 DMAC operates

1 Clock supplied to DMAC is stopped

MSTP3 0 SCIF operates

1 Clock supplied to SCIF is stopped

MSTP2 0 TMU operates

1 Clock supplied to TMU is stopped, and register is initialized*1

MSTP1 0 RTC operates

1 Clock supplied to RTC is stopped*2

MSTP0 0 SCI operates

1 Clock supplied to SCI is stopped

Notes: 1. The register initialized is the same as in standby mode (see table 9-4).
2. The counter operates when the START bit in RCR2 is 1 (see section 11).

9.5.2 Exit from Module Standby Function

The module standby function is exited by clearing the MSTP3–MSTP0 bits to 0, or by a power-
on reset via the 5(6(7 pin or a power-on reset caused by watchdog timer overflow.
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Section 10  Instruction Description

The notation of the instruction descriptions is as follows.

Instruction Mnemonics (Descriptive Name): Classification

Class: is indicated if the instruction is a delayed branch instruction.

Format Abstract Code T Bit

Notation in Assembly
Language

A brief description of
operation

Opcode; displayed in
order MSB × LSB

Effect to T bit

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding
of an operation. The following resources should be used.

• Date type:

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single precision floating point number(32 bits)

double double precision floating point number(64 bits)

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned int Addr);

unsigned short Read_Word(unsigned int Addr);

unsigned int Read_Long(unsigned int Addr);

• Writes data of each length to address Addr. An address error will occur if word data is
written to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned int Addr, unsigned int Data);

unsigned short Write_Word(unsigned int Addr, unsigned int Data);

unsigned int Write_Long(unsigned int Addr, unsigned int Data);

• Execution of an instruction in delay slot at an address Addr :

Delay_Slot(unsigned int Addr);
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• List registers:

unsigned int R[16];

unsigned int SR,GBR,VBR;

unsigned int MACH,MACL,PR;

unsigned int PC;

The content of PC is equal to an instruction address of an instruction at the beginning of the
instruction execution.

• Definition of SR structures:

struct SR0 {

unsigned int dummy0:22;

unsigned int M0:1;

unsigned int Q0:1;

unsigned int I0:4;

unsigned int dummy1:2;

unsigned int S0:1;

unsigned int T0:1;

};

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

• Error display function:

Error( char *er );
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• Floating point definition:
#define PZERO 0

#define NZERO 1
#define DENORM 2
#define NORM 3
#define PINF 4
#define NINF 5
#define qNaN 6
#define sNaN 7
#define EQ 0
#define GT 1
#define LT 2
#define UO 3
#define INVALID 4
#define FADD 0
#define FSUB 1

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */
#define SET_E 0x00020000 /* FPSCR(bit17) */
#define SET_V 0x00010040 /* FPSCR(bit16,6) */
#define SET_Z 0x00008020 /* FPSCR(bit15,5) */
#define SET_O 0x00004010 /* FPSCR(bit14,4) */
#define SET_U 0x00002008 /* FPSCR(bit13,3) */
#define SET_I 0x00001004 /* FPSCR(bit12,2) */
#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */
#define ENABLE_V 0x00000800 /* FPSCR(bit11) */
#define ENABLE_Z 0x00000400 /* FPSCR(bit10) */
#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */
#define ENABLE_I 0x00000080 /* FPSCR(bit7) */

#define FPSCR_FR FPSCR>>21&1
#define FPSCR_PR FPSCR>>19&1
#define FPSCR_DN FPSCR>>18&1
#define FPSCR_I FPSCR>>12&1
#define FPSCR_RM FPSCR&1
#define FR_HEX frf.l[ FPSCR_FR]
#define FR frf.f[ FPSCR_FR]
#define DR frf.d[ FPSCR_FR]
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#define XF_HEX frf.l[~FPSCR_FR]

#define XF frf.f[~FPSCR_FR]

#define XD frf.d[~FPSCR_FR]

union {

int  l[2][16];

float  f[2][16];

double d[2][8];

} frf;

int FPSCR,FPUL;

int sign_of(int n)

{

return(FR_HEX[n]>>31);

}

int data_type_of(int n)

int abs;

abs = FR_HEX[n] & 0x7fffffff;

if(FPSCR_PR == 0) { /* single precision */

if(abs < 0x00800000){

if((FPSCR_DN == 1) || (abs == 0x00000000)){

if(sign_of(n) == 0) return(PZERO);

else return(NZERO);

}

else return(DENORM);

}

else if(abs < 0x7f800000) return(NORM);

else if(abs == 0x7f800000) {

if(sign_of(n) == 0) return(PINF);

else return(NINF);

}

else if(abs < 0x7fc00000) return(qNaN);

else return(sNaN);

}

else { /* double precision */

if(abs < 0x00100000){

if((FPSCR_DN == 1) || (abs == 0x00000000)){
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if(sign_of(n) == 0) return(PZERO);

else return(NZERO);

}

else return(DENORM);

}

else if(abs < 0x7ff00000) return(NORM);

else if((abs == 0x7ff00000) &&

 (FR_HEX[n+1] == 0x00000000)) {

if(sign_of(n) == 0) return(PINF);

else return(NINF);

}

else if(abs < 0x7ff80000) return(qNaN);

else return(sNaN);

}

}

void register_copy(int m,n)

{

FR[n]   = FR[m];

if(FPSCR_PR == 1) FR[n+1] = FR[m+1];

}

void normal_faddsub(int m,n,type)

{

union {

float f;

int l;

} dstf,srcf;

union {

double d;

int l[2];

} dstd,srcd;

union { /* “int double” format is as follows: */

int double x; /* 1-bit sign */

int l[4]; /* 15-bit expornent */

} dstx; /* 112-bit fraction */

if(FPSCR_PR == 0) {

if(type == FADD) srcf.f =  FR[m];

else srcf.f = -FR[m];
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dstd.d = FR[n]; /* convert float to double */

dstd.d += srcf.f;

if(((dstd.d == FR[n]) && (srcf.f != 0.0)) ||

((dstd.d == srcf.f) && (FR[n] != 0.0))) {

set_I();

if(sign_of(m)^ sign_of(n)) {

dstd.l[1] -= 1;

if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

}

}

if(dstd.l[1] & 0x1fffffff) set_I();

dstf.f += srcf.f; /* round toward nearest or even */

if(FPSCR_RM == 1) {

dstd.l[1] &= 0xe0000000; /* round toward zero */

dstf.f = dstd.d;

}

check_single_exception(&FR[n],dstf.f);

} else {

if(type == FADD) srcd.d =  DR[m>>1];

else srcd.d = -DR[m>>1];

dstx.x = DR[n>>1]; /* convert double to extended double */

dstx.x += srcd.d;

if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||

((dstx.x == srcd.d) && (DR[n>>1] != 0.0)) ) {

set_I();

if(sign_of(m)^ sign_of(n)) {

dstx.l[3] -= 1;

if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;

if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;

if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;

}

}

if((dstx.l[2] & 0x0fffffff) || dstx.l[3]) set_I();

dst.d += srcd.d; /* round toward nearest or even */

if(FPSCR_RM == 1) {

dstx.l[2] &= 0xf0000000; /* round toward zero */

dstx.l[3]  = 0x00000000;
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dst.d = dstx.x;

}

check_double_exception(&DR[n>>1] ,dst.d);

}

}

void normal_fmul(int m,n)

{

union {

float f;

int l;

} tmpf;

union {

double d;

int l[2];

} tmpd;

union {

int double x;

int l[4];

} tmpx;

if(FPSCR_PR == 0) {

tmpd.d = FR[n]; /* convert single to double */

tmpd.d *= FR[m]; /* exact product */

tmpf.f *= FR[m]; /* round toward nearest or even */

if(tmpf.f != tmpd.d) set_I();

if((tmpf.f > tmpd.d) && (SPSCR_RM == 1)) {

tmpf.l -= 1; /* round toward zero */

}

check_single_exception(&FR[n],tmpf.f);

} else {

tmpx.x = DR[n>>1]; /* convert double to int double */

tmpx.x *= DR[m>>1]; /* exact product */

tmpd.d *= DR[m>>1]; /* round toward nearest or even */

if(tmpd.d != tmpx.x) set_I();

if(tmpd.d > tmpx.x) && (SPSCR_RM == 1)) {

tmpd.l[1] -= 1; /* round toward zero */

if(tmpd.l[1] == 0xffffffff) tmpd.l[0] -= 1;

}
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check_double_exception(&DR[n>>1], tmpd.d);

}

}

void fipr(int m,n)

{

union {

double d;

int l[2];

} mlt[4];

float dstf;

if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||

(data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||

(data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||

(data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||

(check_product_invalid(m,n)) ||

(check_product_invalid(m+1,n+1)) ||

(check_product_invalid(m+2,n+2)) ||

(check_product_invalid(m+3,n+3)) ) invalid(n+3);

else if((data_type_of(m) == qNaN)|| (data_type_of(n) == qNaN)||

(data_type_of(m+1) == qNaN) || (data_type_of(n+1) == qNaN) ||

(data_type_of(m+2) == qNaN) || (data_type_of(n+2) == qNaN) ||

(data_type_of(m+3) == qNaN) || (data_type_of(n+3) == qNaN)) qnan(n+3);

else if(check_ positive_infinity() &&

(check_ negative_infinity()) invalid(n+3);

else if (check_ positive_infinity()) inf(n+3,0);

else if (check_ negative_infinity()) inf(n+3,1);

else {

for(i=0;i<4;i++) {

/* flush denormalized values if FPSCR_DN == 1) */

if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;

else if(data_type_of(m+i) == NZERO) FR[m+i] = -0.0;

if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;

else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;

mlt[i].d = FR[m+i];

mlt[i].d *= FR[n+i];

/* The multiplication array emulation is necessary for obtaining the
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same result as that of the FIPR hardware, because the hardware cut

lower 18 bits of the array output before carry propagate addition.

The following flow is different from the hardware algorism but simple. */

mlt[i].l[1] &= 0xff000000;

 mlt[i].l[1] |= 0x00800000;

}

mlt[0].d += mlt[1].d + mlt[2].d + mlt[3].d;

mlt[0].l[1] &= 0xff800000;

dstf = mlt[0].d;

set_I();

check_single_exception(&FR[n+3],dstf);

}

}

void check_single_exception(float *dst,result)

{

union {

float f;

int l;

} tmp;

float abs;

if(result < 0.0) tmp.l = 0xff800000; /* -infinity */

else tmp.l = 0x7f800000; /* +infinity */

if(result == tmp.f) {

set_O();

if(FPSCR_RM == 1) {

tmp.l -= 1; /* largest magunitude finite number */

result = tmp.f;

}

}

if(result < 0.0) abs = -result;

else abs =  result;

tmp.l = 0x00800000; /* minimum magunitude normalized number */

if(abs < tmp.f) {

if((FPSCR_DN == 1) && (abs != 0.0)) {

set_I();

if(result < 0.0) result = -0.0; /* flush demornalized value */

else result =  0.0;
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}

if(FPSCR_I == 1) set_U();

}

if(FPSCR & ENABLE_OUI) fpu_exception_trap();

else *dst = result;

}

void check_double_exception(double *dst,result)

{

union {

double d;

int l[2];

} tmp;

double abs;

if(result < 0.0) tmp.l[0] = 0xfff00000; /* -infinity */

else tmp.l[0] = 0x7ff00000; /* +infinity */

tmp.l[1] = 0x00000000;

if(result == tmp.d)

set_O();

if(FPSCR_RM == 1) {

tmp.l[0] -= 1;

tmp.l[1] = 0xffffffff;

result = tmp.d; /* largest magunitude finite number */

}

}

if(result < 0.0) abs = -result;

else abs =  result;

tmp.l[0] = 0x00100000; /* minimum magunitude normalized number */

tmp.l[1] = 0x00000000;

if(abs < tmp.d) {

if((FPSCR_DN == 1) && (abs != 0.0)) {

set_I();

if(result < 0.0) result = -0.0; /* flush demornalized value */

else result =  0.0;

}

if(FPSCR_I == 1) set_U();

}

if(FPSCR & ENABLE_OUI) fpu_exception_trap();
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else *dst = result;

}

int check_product_invalid(int m,n)

{

return(check_product_infinity(m,n)  &&

((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||

 (data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));

}

int check_ product_infinity(int m,n)

{

return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||

(data_type_of(m) == NINF) || (data_type_of(n) == NINF));

}

int check_ positive_infinity(int m,n)

{

  return(((check_ product_infinity(m,n) && (~sign_of(m)^ sign_of(n))) ||

((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)^ sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)^ sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)^ sign_of(n+3))));

}

int check_ negative_infinity(int m,n)

{

  return(((check_ product_infinity(m,n) && (sign_of(m)^ sign_of(n))) ||

((check_ product_infinity(m+1,n+1) && (sign_of(m+1)^ sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (sign_of(m+2)^ sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (sign_of(m+3)^ sign_of(n+3))));

}

void clear_cause () {FPSCR &= ~CAUSE;}

void set_E() {FPSCR |= SET_E;}

void set_V() {FPSCR |= SET_V;}

void set_Z() {FPSCR |= SET_Z;}

void set_O() {FPSCR |= SET_O;}

void set_U() {FPSCR |= SET_U;}

void set_I() {FPSCR |= SET_I;}

void invalid(int n)

{

set_V();



170

if((FPSCR & ENABLE_V) == 0 qnan(n);

else fpu_exception_trap();

}

void dz(int n,sign)

{

set_Z();

if((FPSCR & ENABLE_Z) == 0 inf(n,sign);

else fpu_exception_trap();

}

void zero(int n,sign)

{

if(sign == 0) FR_HEX [n]   = 0x00000000;

else FR_HEX [n]   = 0x80000000;

if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;

}

void inf(int n,sign) {

if (FPSCR_PR==0) {

if(sign == 0) FR_HEX [n]   = 0x7f800000;

else FR_HEX [n]   = 0xff800000;

} else {

if(sign == 0) FR_HEX [n]   = 0x7ff00000;

else FR_HEX [n]   = 0xfff00000;

FR_HEX [n+1] = 0x00000000;

}

}

void qnan(int n)

{

if (FPSCR_PR==0) FR[n]   = 0x7fbfffff;

else { FR[n]   = 0x7ff7ffff;

FR[n+1] = 0xffffffff;

}

}
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Examples: Examples are written in Assembly Language and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Note: The SH series cross assembler version 1.0 does not support the conditional assembler
functions.
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ADD (Add Binary): Arithmetic Instruction

Format Abstract Code T Bit

ADD Rm,Rn Rm + Rn ∅ Rn 0011nnnnmmmm1100 —

ADD #imm,Rn Rn + #imm ∅ Rn 0111nnnniiiiiiii —

Description: adds contents of general register Rm and Rn, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm. Since the 8-bit immediate data is sign-extended to
32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(int m,int n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(int i,int n) /* ADD #imm,Rn */

{

if ((i&0x80)==0)

R[n]+=(0x000000FF & i);

else R[n]+=(0xFFFFFF00 | i);

PC+=2;

}

Examples:

ADD R0,R1 Before execution R0 = H'7FFFFFFF, R1 = H'00000001

After execution R1 = H'80000000

ADD #H'01,R2 Before execution R2 = H'00000000

After execution R2 = H'00000001

ADD #H'FE,R3 Before execution R3 = H'00000001

After execution R3 = H'FFFFFFFF
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ADDC (Add with Carry): Arithmetic Instruction

Format Abstract Code T Bit

ADDC Rm,Rn Rn + Rm + T ∅ Rn, carry ∅ T 0011nnnnmmmm1110 Carry

Description: adds contents of general register Rm, T bit, and Rn, stores the result in Rn. and
stores the carry in T bit. This instruction may be used to calculate data whose size is longer than
32 bits.

Operation:

ADDC (int m,int n) /* ADDC Rm,Rn  */

{

unsigned long result;

result=(unsigned long)R[m]+ (unsigned long)R[n]+ (unsigned long)T;

R[n]=(unsigned int)(result & 0x00000000FFFFFFFF)

T=(result & 0x0000000100000000)>>32;

PC+=2;

}

Examples:

CLRT R0:R1 (64 bits) + R2:R3 (64 bits) =  R0:R1 (64 bits)

ADDC R3,R1 Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

After execution T = 1, R1 = H'0000000

ADDC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 0, R0 = H'00000001
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ADDV (Add with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code T Bit

ADDV Rm,Rn Rn + Rm ∅ Rn, overflow ∅ T 0011nnnnmmmm1111 Overflow

Description: adds signed 32-bit contents of general register Rm and Rn, and stores the result in
Rn. If an overflow or an underflow occurs, T bit is set to 1. Otherwise, T bit is set to zero.

Operation:

ADDV(int m,int n)  /* ADDV Rm,Rn  */

{

int src_Rn=(int)R[n];

R[n]+=R[m];

if( ((int)R[m]>=0 && Rn>=0 && (int)R[n]<0) /* Overflow */

|| ((int)R[m]<0 && Rn<0 && (int)R[n]>0) /* Underflow */

) T=1;

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

After execution R1 = H'80000000, T = 1
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AND (AND Logical): Logic Operation Instruction

Format Abstract Code T Bit

AND Rm,Rn Rn & Rm ∅ Rn 0010nnnnmmmm1001 —

AND #imm,R0 R0 & imm ∅ R0 11001001iiiiiiii —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm ∅
(R0 + GBR)

11001101iiiiiiii —

Description: logically ANDs contents of general registers Rm and Rn, and stores the result in
Rn. The content of general register R0 can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed with GBR-based addressing can be ANDed with 8-bit immediate
data.

Note: After “AND #imm, R0” is executed, the upper 24 bits of R0 are always cleared to zero.

Operation:

AND(int m,int n) /* AND Rm,Rn  */

{

R[n]&=R[m]

PC+=2;

}

ANDI(int i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & i);

PC+=2;

}

ANDM(int i) /* AND.B #imm,@(R0,GBR) */

{

int temp;

temp=(int)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}
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Examples:

AND R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'00000000

AND #H'0F,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'0000000F

AND.B #H'80,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'80

BF (Branch if False): Branch Instruction

Format Abstract Code T Bit

BF label When T = 0, PC + 4 + disp*2 ∅ PC;
When T = 1, nop

10001011dddddddd —

Description: conditionally branches to an address (PC + displacement * 2), depending on T bit.
If T = zero, the branch is taken. If T = 1, it does not branch. The PC source value is an
instruction address of the BF. The 8-bit displacement is sign-extended and doubled.
Consequently, the branch range is –256 to +254 bytes.

Note: If the displacement is too short to reach a branch target, a combination of BF and BRA or
JMP makes this branch possible.

Operation:

BF(int d) /* BF disp  */

{

int disp;

if ((d&0x80)==0)

disp=(0x000000FF & d);

else disp=(0xFFFFFF00 | d);

if (T==0)

PC=PC+4+(disp*2);

else PC+=2;

}
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Example:

CLRT T is always cleared to 0

BT TRGET_T Does not branch, because T = 0

BF TRGET_F Branches to TRGET_F, because T = 0

NOP

NOP

TRGET_F: ♦ Branch destination of the BF instruction

BF/S (Branch if False with Delay Slot): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code T Bit

BF/S
label

When T = 0, PC + 4 + disp*2 ∅ PC;
When T = 1, nop

10001111dddddddd —

Description: conditionally branches to an address (PC + 4 + displacement * 2), depending on T
bit. If T = zero, the branch is taken. If T = 1, it does not branch. The PC source value is an
instruction address of the BF/S. The 8-bit displacement is sign-extended and doubled.
Consequently, the branch range is –256 to +254 bytes.

Note: Since this is a delayed branch instruction, the instruction immediately following is
executed before the branch. Between the time this instruction and the instruction
immediately following are executed, no interrupts are accepted. When the instruction
immediately following is a branch instruction, it is recognized as an illegal slot
instruction. If the displacement is too short to reach a branch target, a combination of BF
and BRA or JMP makes this branch possible.

Operation:

BFS(int d) /* BFS disp  */
{

int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFF00 | d);
if (T==0) {

Delay_Slot(PC+2);
PC=PC+4+(disp*2);

}
else PC+=2;

}
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Examples:

CLRT T is always 0

BT/S TARGET_T Does not branch, because T = 0

NOP

BF/S TARGET_F Branches to TARGET, because T = 0

ADD R0,R1 Executed before branch.

NOP

TARGET_F: ♦ Branch destination of the BF/S instruction
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BRA (Branch): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code T Bit

BRA label PC + 4 + disp*2 ∅ PC 1010dddddddddddd —

Description: branches unconditionally to an address (PC + 4 + displacement * 2). BRA is a
delayed branch. The PC source value is an instruction address of the BRA. The 12-bit
displacement is sign-extended and doubled. Consequently, the branch range is –4096 to +4094
bytes. If the displacement is too short to reach a branch target, JMP instruction makes this
branch possible.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BRA(int d) /* BRA disp  */

{

int disp;

if ((d&0x800)==0)

disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

Delay_Slot(PC+2);

PC=PC+4+(disp*2);

}

Examples:

BRA TRGET Branches to TRGET

ADD R0,R1 Executes ADD before branching

NOP

TRGET: ♦ Branch destination of the BRA instruction
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BRAF (Branch Far): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code T Bit

BRAF Rn PC + 4 + Rn ∅ PC 0000nnnn00100011 —

Description: branches unconditionally to an address (PC + 4 + Rn). The target address is a
result of adding PC, 4 and the 32-bit contents of the general register Rn. the PC source value is
an instruction address of the BRAF.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the
next instruction. If the next instruction is a branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BRAF(int n) /* BRAF Rn  */

{

Delay_Slot(PC+2);

PC=PC+4+R[n];

}

Examples:

MOV.L #(TARGET-BRAF_PC),R0 Sets displacement.

BRAF R0 Branches to TARGET

ADD R0,R1 Executes ADD before branching

   BRAF_PC:

NOP

   TARGET: ♦ Branch destination of the BRAF instruction
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BSR (Branch to Subroutine): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code T Bit

BSR label PC + 4 ∅ PR,
PC + 4 + disp*2 ∅ PC

1011dddddddddddd —

Description: branches to an address (PC + 4 + displacement * 2), and stores an address (PC + 4)
in PR. The PC source value is an instruction address of the BSR. The 12-bit displacement is
sign-extended and doubled. Consequently, the branch range is –4096 to +4094 bytes. If the
displacement is too short to reach the branch destination, JSR instruction makes this branch
possible.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSR(int d) /* BSR disp */

{

int disp;

if ((d&0x800)==0)

disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

PR=PC+4;

Delay_Slot(PC+2);

PC=PC+4+(disp*2);

}
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Examples:

BSR TRGET Branches to TRGET

MOV R3,R4 Executes the MOV instruction before branching

ADD R0,R1 ♦ Return address from the subroutine procedure (PR data)

.......

.......

TRGET: ♦ Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #1,R0 Executes MOV before branching
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BSRF (Branch to Subroutine Far): Branch Instruction
Class: Delayed branch instruction

Format Abstract Code T Bit

BSRF Rn PC + 4 ∅ PR,
PC + 4 + Rn ∅ PC

0000nnnn00000011 —

Description: branches to an address (PC + 4 + Rn), and stores an address (PC + 4) in PR. The
PC source value is an instruction address of the BSRF. The branch target is a result of adding
PC, 4 and the 32-bit content of the general register Rn.

Note: Since this is a delayed branch instruction, the instruction after BSRF is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If
the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

BSRF(int n) /* BSRF Rn  */

{

PR=PC+4;

Delay_Slot(PC+2);

PC=PC+4+R[n];

}

Examples:

MOV.L #(TARGET-BSRF_PC),R0 Sets displacement.

BRSF R0 Branches to TARGET

MOV R3,R4 Executes the MOV instruction before branching

BSRF_PC:

ADD R0,R1

.....

TARGET: ♦Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #1,R0 Executes MOV before branching
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BT (Branch if True): Branch Instruction

Format Abstract Code T Bit

BT label When T = 1, PC + 4 + disp*2 ∅ PC;
When T = 0, nop

10001001dddddddd —

Description: conditionally branches to an address (PC + 4 + displacement * 2), depending on T
bit. If T = 1, the branch is taken. If T = zero, it does not branch. The PC source value is an
instruction address of the BT. The 8-bit displacement is sign-extended and doubled.
Consequently, the branch range is –256 to +254 bytes.

Note: If the displacement is too short to reach a branch target, a combination of BT and BRA or
JMP makes this branch possible.

Operation:

BT(int d) /* BT disp  */

{

int disp;

if ((d&0x80)==0)

disp=(0x000000FF & d);

else disp=(0xFFFFFF00 | d);

if (T==1)

PC=PC+4+(disp*2);

else PC+=2;

}

Examples:

SETT T is always 1

BF TRGET_F Does not branch, because T = 1

BT TRGET_T Branches to TRGET_T, because T = 1

NOP

NOP

TRGET_T: ♦ Branch destination of the BT instruction
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BT/S (Branch if True with Delay Slot): Branch Instruction

Format Abstract Code T Bit

BT/S label When T = 1, PC + 4 +disp*2 ∅ PC;
When T = 0, nop

10001101dddddddd —

Description: conditionally branches to an address (PC + 4 + displacement * 2), depending on T
bit. If T = 1, the branch is taken. If T = zero, it does not branch. The PC source value is an
instruction address of the BT/S. The 8-bit displacement is sign-extended and doubled.
Consequently, the branch range is –256 to +254 bytes. If the displacement is too short to reach a
branch target, a combination of BT/S and BRA or JMP makes this branch possible.

Note: Since this is a delay branch instruction, the instruction immediately following is
executed before the branch. Between the time this instruction and the instruction
immediately following are executed, no interrupts are accepted. When the instruction
immediately following is a branch instruction, it is recognized as an illegal slot
instruction.

Operation:

BTS(int d) /* BTS disp  */
{

int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFF00 | d);
if (T==1) {

Delay_Slot(PC+2);
PC=PC+4+(disp*2);

}
else PC+=2;

}

Examples:

SETT T is always 1

BF/S TARGET_F Does not branch, because T = 1
NOP

BT/S TARGET_T Branches to TARGET, because T = 1

ADD R0,R1 Executes before branching.
NOP

TARGET_T: ♦ Branch target of the BT/S instruction
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CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code T Bit

CLRMAC 0 ∅ MACH, MACL 0000000000101000 —

Description: Clears the MACH and MACL registers.

Operation:

CLRMAC() /* CLRMAC  */

{

MACH=0;

MACL=0;

PC+=2;

}

Examples:

CLRMAC Initializes the MAC register

MAC.W @R0+,@R1+Multiply and accumulate operation

CLRS (Clear S Bit): System Control Instruction

Format Abstract Code T Bit

CLRS 0 ∅ S 0000000001001000 —

Description: Clears the S bit in SR.

Operation:

CLRS() /* CLRS  */

{

S=0;

PC+=2;

}

Examples:

CLRS Before execution S = 1

After execution S = 0
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CLRT (Clear T Bit): System Control Instruction

Format Abstract Code T Bit

CLRT 0 ∅ T 0000000000001000 0

Description: Clears the T bit in SR.

Operation:

CLRT() /* CLRT  */

{

T=0;

PC+=2;

}

Examples:

CLRT Before execution T = 1

After execution T = 0
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CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code T Bit

CMP/EQ Rm,Rn When Rn = Rm, 1 ∅ T 0011nnnnmmmm0000 Comparison result

CMP/GE Rm,Rn When signed and Rn _ Rm, 1 ∅ T 0011nnnnmmmm0011 Comparison result

CMP/GT Rm,Rn When signed and Rn > Rm, 1 ∅ T 0011nnnnmmmm0111 Comparison result

CMP/HI Rm,Rn When unsigned and Rn > Rm, 1 ∅ T 0011nnnnmmmm0110 Comparison result

CMP/HS Rm,Rn When unsigned and Rn _ Rm, 1 ∅ T 0011nnnnmmmm0010 Comparison result

CMP/PL Rn When Rn > 0, 1 ∅ T 0100nnnn00010101 Comparison result

CMP/PZ Rn When Rn _ 0, 1 ∅ T 0100nnnn00010001 Comparison result

CMP/STR Rm,Rn When any byte in Rn is equal to the
corresponding byte in Rm, 1 ∅ T

0010nnnnmmmm1100 Comparison result

CMP/EQ #imm,R0 When R0 = imm, 1 ∅ T 10001000iiiiiiii Comparison result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a
specified condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied,
and the Rn data does not change. The nine conditions in table 6.1 can be specified. Conditions
PZ and PL are the results of comparisons between Rn and 0. Sign-extended 8-bit immediate data
can also be compared with R0 by using condition EQ. Here, R0 data does not change. Table 6.1
shows the mnemonics for the conditions.

Table 6.1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn _ Rm with signed data, T = 1

CMP/GTRm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HSRm,Rn If Rn _ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn _ 0, T = 1

CMP/STR Rm,Rn If any byte in Rn is equal to the corresponding byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1
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Operation:

CMPEQ(int m,int n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m])

T=1;

else T=0;

PC+=2;

}

CMPGE(int m,int n) /* CMP_GE Rm,Rn */

{

if ((int)R[n]>=(int)R[m])

T=1;

else T=0;

PC+=2;

}

CMPGT(int m,int n) /* CMP_GT Rm,Rn */

{

if ((int)R[n]>(int)R[m])

T=1;

else T=0;

PC+=2;

}

CMPHI(int m,int n) /* CMP_HI Rm,Rn */

{

if ((unsigned int)R[n]>(unsigned int)R[m])

T=1;

else T=0;

PC+=2;

}
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CMPHS(int m,int n) /* CMP_HS Rm,Rn */

{

if ((unsigned int)R[n]>=(unsigned int)R[m])

T=1;

else T=0;

PC+=2;

}

CMPPL(int n) /* CMP_PL Rn */

{

if ((int)R[n]>0)

T=1;

else T=0;

PC+=2;

}

CMPPZ(int n) /* CMP_PZ Rn */

{

if ((int)R[n]>=0)

T=1;

else T=0;

PC+=2;

}

CMPSTR(int m,int n) /* CMP_STR Rm,Rn */

{

if( (R[m]&0xFF000000)==( R[n]&0xFF000000)

|| (R[m]&0x00FF0000)==( R[n]&0x00FF0000)

|| (R[m]&0x0000FF00)==( R[n]&0x0000FF00)

|| (R[m]&0x000000FF)==( R[n]&0x000000FF)

) T=1;

else T=0;

PC+=2;

}
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CMPIM(int i) /* CMP_EQ #imm,R0 */

{

int imm;

if ((i&0x80)==0)

imm=(0x000000FF & i);

else imm=(0xFFFFFF00 | i);

if (R[0]==imm)

T=1;

else T=0;

PC+=2;

}

Examples:

CMP/GE R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T Does not branch because T = 0

CMP/HS R0,R1 R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T Branches because T = 1

CMP/STR R2,R3 R2 = “ABCD”, R3 = “XYCZ”

BT TRGET_T Branches because T = 1
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DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code T Bit

DIV0S Rm,Rn MSB of Rn ∅ Q, MSB of Rm ∅
M, M^Q ∅ T

0010nnnnmmmm0111 Calculation result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(int m,int n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0)

Q=0;

else Q=1;

if ((R[m]&0x80000000)==0)

M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Examples: See DIV1.
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DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code T Bit

DIV0U 0 ∅ M/Q/T 0000000000011001 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U() /* DIV0U  */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.

DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code T Bit

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or
used in combination with other instructions. During this repetition, do not rewrite the specified
register or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). Zero division, overflow
detection, and remainder operation are not supported. Check for zero division and overflow
division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.
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Operation:

DIV1(int m,int n) /* DIV1 Rm,Rn  */

{

unsigned int tmp0,tmp2;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

tmp2=R[m]

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=tmp2;

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=tmp2;

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

case 1:switch(M){



195

case 0:tmp0=R[n];

R[n]+=tmp2;

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=tmp2;

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}
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Example 1:

R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat  16

DIV1 R0,R1 Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 R1 = Quotient

Example 2:

R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits): Unsigned

TST R0,R0 Zero division check

BT ZERO_DIV

CMP/HS R0,R1 Overflow check

BT OVER_DIV

DIV0U Flag initialization

.arepeat  32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient
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Example 3:

R1 (16 bits)/R0 (16 bits) = R1 (16 bits): Signed

SHLL16 R0 Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 Sign-extends the dividend to 32 bits

XOR R2,R2 R2 = 0

MOV R1,R3

ROTCL R3

SUBC R2,R1 Decrements if the dividend is negative

DIV0S R0,R1 Flag initialization

.arepeat  16

DIV1 R0,R1 Repeat 16 times

.aendr

EXTS.W R1,R1

ROTCL R1 R1 = quotient (one’s complement)

ADDC R2,R1 Increments and takes the two’s complement if the MSB of the quotient is 1

EXTS.W R1,R1 R1 = quotient (two’s complement)

Example 4:

R2 (32 bits) / R0 (32 bits) = R2 (32 bits): Signed

MOV R2,R3

ROTCL R3

SUBC R1,R1 Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 R3 = 0

SUBC R3,R2 Decrements and takes the one’s complement if the dividend is negative

DIV0S R0,R1 Flag initialization

.arepeat  32

ROTCL R2 Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 R2 = Quotient (one’s complement)

ADDC R3,R2 Increments and takes the two’s complement if the MSB of the quotient
is 1. R2 = Quotient (two’s complement)
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DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code T Bit

DMULS.L
Rm,Rn

With sign, Rn ∞ Rm ∅ MACH,
MACL

0011nnnnmmmm110
1

—

Description: multiply a 32-bit content of general register Rm by a 32-bit content of Rn, stores
higher 32 bits of the 64-bit result in MACH, and stores lower 32 bits of the 64-bit result in
MACH. The operation is a signed arithmetic operation.

Operation:

DMULS(int m,int n) /* DMULS.L Rm,Rn  */

{

long result;

result=(long)((int)R[m]))* (long)((int)R[n]));

MACH=(unsigned int)((unsigned long)result>>32);

MACL=(unsigned int)(result&0x00000000FFFFFFFF);

PC+=2;

}

Examples:

DMULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R2Operation result (higher)

STS MACL,R3 Operation result (lower)
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DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code T Bit

DMULU.L Rm,Rn Without sign, Rn ∞ Rm ∅
MACH, MACL

0011nnnnmmmm0101 —

Description: multiply a 32-bit content of general register Rm by a 32-bit content of Rn, stores
higher 32 bits of the 64-bit result in MACH, and stores lower 32 bits of the 64-bit result in
MACH. The operation is an unsigned arithmetic operation.

Operation:

DMULU(int m,int n) /* DMULU.L Rm,Rn  */

{

unsigned long result;

result=(unsigned long)R[m]* (unsigned long)R[n];

MACH=(unsigned int)((unsigned long)result>>32);

MACL=(unsigned int)(result&0x00000000FFFFFFFF);

PC+=2;

}

Examples:

DMULU R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R2Operation result (higher)

STS MACL,R3 Operation result (lower)
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DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code T Bit

DT Rn Rn - 1 ∅ Rn;
When Rn is 0, 1 ∅ T,
when Rn is nonzero, 0 ∅ T

0100nnnn0001000
0

Comparison
result

Description: decreases the content of general register Rn by 1, stores the result in Rn, and
compares the result with zero. If the result is zero, T bit is set to 1. Otherwise, the T bit is set to
zero.

Operation:

DT(int n) /* DT Rn  */

{

R[n]--;

if (R[n]==0)

T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 Sets the number of loops.

LOOP:

ADD R0,R1

DT R5 Decrements the R5 value and checks whether it has become 0.

BF LOOP Branches to LOOP if T=0. (In this example, loops 4 times.)
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EXTS (Extend as Signed): Data Transfer Instruction

Format Abstract Code T Bit

EXTS.B Rm,Rn Sign-extend Rm from byte ∅ Rn 0110nnnnmmmm1110 —

EXTS.W Rm,Rn Sign-extend Rm from word ∅ Rn 0110nnnnmmmm1111 —

Description: sign-extends the content of general register Rm, and stores the result in Rn. If byte
length is specified, the content of bit 7 in Rm is copied into bit 8 to bit 31 in Rn. If word length
is specified, the content of bit 15 in Rm is copied into bit 16 to bit 31 in Rn.

Operation:

EXTSB(int m,int n) /* EXTS.B Rm,Rn  */

{

if ((R[m]&0x00000080)==0)

R[n]=R[m] & 0x000000FF;

else R[n]=R[m] | 0xFFFFFF00;

PC+=2;

}

EXTSW(int m,int n) /* EXTS.W Rm,Rn  */

{

if ((R[m]&0x00008000)==0)

R[n]=R[m] & 0x0000FFFF;

else R[n]=R[m] | 0xFFFF0000;

PC+=2;

}

Examples:

EXTS.B R0,R1 Before execution R0 = H'00000080

After execution R1 = H'FFFFFF80

EXTS.W R0,R1 Before execution R0 = H'00008000

After execution R1 = H'FFFF8000
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EXTU (Extend as Unsigned): Data Transfer Instruction

Format Abstract Code T Bit

EXTU.B Rm,Rn Zero-extend Rm from byte ∅ Rn 0110nnnnmmmm1100 —

EXTU.W Rm,Rn Zero-extend Rm from word ∅ Rn 0110nnnnmmmm1101 —

Description: zero-extends the content of general register Rm, and stores the result in Rn. If byte
length is specified, bit 8 to bit 31 in Rn are set to zero. If word length is specified, bit 16 to bit
31 in Rn are set to zero.

Operation:

EXTUB(int m,int n) /* EXTU.B Rm,Rn  */

{

R[n]=R[m] & 0x000000FF;

PC+=2;

}

EXTUW(int m,int n) /* EXTU.W Rm,Rn  */

{

R[n]=R[m] & 0x0000FFFF;

PC+=2;

}

Examples:

EXTU.B R0,R1 Before execution R0 = H'FFFFFF80

After execution R1 = H'00000080

EXTU.W R0,R1 Before execution R0 = H'FFFF8000

After execution R1 = H'00008000
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FABS (Floating Point Absolute Value): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FABS FRn |FRn| ∅ FRn 1111nnnn01011101 —

1 FABS DRn |DRn| ∅ DRn 1111nnn001011101 —

Description

Clears the most significant bit (sign bit) of the floating-point number in FRn/DRn to 0, and
writes the result to FRn/DRn. FPSCR.cause filed and FPSCR.flag field do not change.

Operation

void FABS (int n){

     FR[n] = FR[n] & 0x7fffffff;

     pc += 2;

}

/* The same operation is performed regardless of the precision. */

FADD (Floating Point Add): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FADD FRm,FRn FRn+FRm ∅ FRn 1111nnnnmmmm0000 —

1 FADD DRm,DRn DRn+DRm ∅ DRn 1111nnn0mmm00000 —

Description

When the PR bit in FPSCR is 0: Arithmetically adds the two single-precision floating-point
numbers contained in FRm and FRn, and writes the result to FRn.

When the PR bit in FPSCR is 1: Arithmetically adds the two double-precision floating-point
numbers contained in DRm and DRn, and writes the result to DRn.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.
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Operation

void FADD (int m,n)

{

pc += 2;

clear_cause();

if((data_type_of(m) == sNaN) ||

(data_type_of(n) == sNaN)) invalid(n);

else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

else switch (data_type_of(m)){

case NORM: switch (data_type_of(n)){

case NORM: normal_faddsub(m,n,ADD); break;

case PZERO:

 case NZERO: register_copy(m,n); break;

default: break;

  } break;

case PZERO: switch (data_type_of(n)){

case NZERO: zero(n,0); break;

default: break;

} break;

case NZERO: break;

case PINF: switch (data_type_of(n)){

case NINF: invalid(n);     break;

default: inf(n,0);       break;

} break;

case NINF: switch (data_type_of(n)){

case PINF: invalid(n);     break;

default: inf(n,1);       break;

} break;

}

}
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FADD Special Cases

FRn,DRn

FRm,DRm NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM ADD –INF

+0 +0

–0 –0

+INF +INF Invalid

–INF –INF Invalid –INF

DENORM Error

qNaN qNaN

sNaN Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Overflow
Underflow
Inexact
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FCMP (Floating Point Compare): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FCMP/EQ FRm,FRn (FRn == FRm) ? 1 : 0 ∅ T 1111nnnnmmmm0100 1/0

1 FCMP/EQ DRm,DRn (DRn == DRm) ? 1 : 0 ∅ T 1111nnn0mmm00100 1/0

0 FCMP/GT FRm,FRn (FRn > FRm) ? 1 : 0 ∅ T 1111nnnnmmmm0101 1/0

1 FCMP/GT DRm,DRn (DRn > DRm) ? 1 : 0 ∅ T 1111nnn0mmm00101 1/0

Description

1. When the PR bit in FPSCR is 0: Arithmetically compares the two single-precision floating-
point numbers contained in FRm and FRn, and writes 1 to the T bit if the values are equal, or
0 if not equal.

2. When the PR bit in FPSCR is 1: Arithmetically compares the two double-precision floating-
point numbers contained in DRm and DRn, and writes 1 to the T bit if the values are equal,
or 0 if not equal.

3. When the PR bit in FPSCR is 0: Arithmetically compares the two single-precision floating-
point numbers contained in FRm and FRn, and writes 1 to the T bit if FRn > FRm, or 0
otherwise.

4. When the PR bit in FPSCR is 1: Arithmetically compares the two double-precision floating-
point numbers contained in DRm and DRn, and writes 1 to the T bit if DRn > DRm, or 0
otherwise.
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Operation

void FCMP_EQ(int m,n) /* FCMP/EQ  FRm,FRn */
{
     pc += 2;
     clear_cause();
     if(fcmp_chk (m,n) == INVALID) fcmp_invalid();
     else if(fcmp_chk (m,n) == EQ)      T = 1;
     else                               T = 0;
}
void FCMP_GT(int m,n) /* FCMP/GT  FRm,FRn */
{
     pc += 2;
     clear_cause();
     if ((fcmp_chk (m,n) == INVALID) ||

  (fcmp_chk (m,n) == UO)) fcmp_invalid();
     else if(fcmp_chk (m,n) == GT)  T = 1;
     else                           T = 0;
}
int fcmp_chk (int m,n)
{
     if((data_type_of(m) == sNaN) ||
        (data_type_of(n) == sNaN))        return(INVALID);
     else if((data_type_of(m) == qNaN) ||
             (data_type_of(n) == qNaN))      return(UO);
     else case(data_type_of(m)){
     NORM:     case(data_type_of(n)){
               PINF   :return(GT); break;
               NINF   :return(LT); break;
               default: break;
               }      break;
     PZERO:
     NZERO:    case(data_type_of(n)){
               PZERO  :
               NZERO  :return(EQ); break;
               default: break;
               }      break;
     PINF :    case(data_type_of(n)){
               PINF   :return(EQ); break;
               default:return(LT); break;
               }      break;
     NINF :    case(data_type_of(n)){
               NINF   :return(EQ); break;
               default:return(GT); break;
               }      break;
     }
     if(FPSCR_PR == 0) {

if(FR[n] == FR[m]) return(EQ);
else if(FR[n] > FR[m]) return(GT);
else return(LT);

} else {
if(DR[n>>1] == DR[m>>1]) return(EQ);
else if(DR[n>>1] > DR[m>>1])return(GT);
else return(LT);

}
}
void fcmp_invalid()
{

set_V(); if((FPSCR & ENABLE_V) == 0)  T = 0;
}
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FCMP Special Cases

FCMP/EQ FRn,DRn
FRm,DRm NORM DNORM +0 –0 +INF –INF qNaN sNaN

NORM CMP
DNORM

+0 EQ
–0

+INF EQ
–INF EQ
qNaN !EQ
sNaN Invalid

Note: When DN = 1, a denormalized number is treated as zero.

FCMP/GT FRn,DRn
FRm,DRm NORM DENORM +0 –0 +INF –INF qNaN sNaN

NORM CMP GT !GT
DENORM

+0 !GT
–0

+INF !GT !GT
–INF GT !GT
qNaN UO
sNaN Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

Invalid operation
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FCNVDS (Floating Point Convert Double to Single Precision): Floating-
Point Instruction

PR Format Operation Instruction Code T Bit

0 — reserved 1111mmmm10111101 —

1 FCNVDS DRm,FPUL (float)DRm ∅ FPUL 1111mmm010111101 —

Description

Converts the double-precision floating-point number in DRn to a single-precision floating-point
number, and writes the result to FPUL.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FPUL does not change. Appropriate actions must be taken by
software.
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Operation

void FCNVDS(int m){
     case((FPSCR.PR){
          0:  undefined_operation();   /* reserved */
          1:  fcnvds(m);  break;  /* FCNVDS */
     }
}
void fcnvds(int m)
{
     pc += 2;
     clear_cause();
     case(data_type_of(m)){
          NORM  :
          PZERO :
          NZERO :     normal_ fcnvds(m);  break;
          DENORM : set_E();
          PINF  :     FPUL = 0x7f800000; break;
          NINF  :     FPUL = 0xff800000; break;
          qNaN  :     FPUL = 0x7fbfffff; break;
          sNaN  : set_V();

if((FPSCR & ENABLE_V) == 0) FPUL = 0x7fbfffff;
else fpu_exception_trap();   break;

     }
}
void normal_fcnvds(int m)
{
int sign;
float abs;
union {

float f;
int l;

} dstf,tmpf;
union {

double d;
int l[2];

} dstd;
dstd.d = DR[m>>1];
if(dstd.l[1] & 0x1fffffff)) set_I();
if(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero */
dstf.f = dstd.d;
check_single_exception(&FPUL, dstf.f);

}

FCNVDS Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVDS(FRn FPUL) FCNVDS FCNVDS +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Overflow
Underflow
Inexact
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FCNVSD (Floating Point Convert Single to Double Precision): Floating-
Point Instruction

PR Format Operation Instruction Code T Bit

0 — reserved 1111nnnn10101101 —

1 FCNVSD FPUL,DRn (double)FPUL ∅ DRn 1111nnn010101101 —

Description

Interprets the contents of FPUL as a single-precision floating-point number, converts that
number to a double-precision floating-point number, and writes the result to DRn.

Operation

void FCNVSD(int n){
     pc += 2;
     clear_cause();
     case((FPSCR_PR){
          0:  undefined_operation();    /* reserved */
          1:  fcnvsd (n,&FPUL);  break;  /* FCNVSD */
     }
}
void fcnvsd(int n, float *FPUL)
{
     case(fpul_typ()){
          PZERO :
          NZERO :
          PINF  :
          NINF  : DR[n>>1] = *FPUL; break;
          DENORM : set_E(); break;
          qNaN  : qnan(n); break;
          sNaN  : invalid(n); break;
     }
}
int fpul_type()
{
int abs;

abs = FPUL & 0x7fffffff;
if(abs < 0x00800000){

if((FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(src) == 0) return(PZERO);
else return(NZERO);

}
else return(DENORM);

}
else if(abs < 0x7f800000) return(NORM);
else if(abs == 0x7f800000) {

if(sign_of(src) == 0) return(PINF);
else return(NINF);

}
else if(abs < 0x7fc00000) return(qNaN);
else return(sNaN);

}
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FCNVSD Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVSD(FPUL FRn) +NORM –NORM +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
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FDIV (Floating Point Divide): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FDIV FRm,FRn FRn/FRm ∅ FRn 1111nnnnmmmm0011 —

1 FDIV DRm,DRn DRn/DRm ∅ DRn 1111nnn0mmm00011 —

Description

When the PR bit in FPSCR is 0: Arithmetically divides the single-precision floating-point
number in FRn by the single-precision floating-point number in FRm, and writes the result to
FRn.

When the PR bit in FPSCR is 1: Arithmetically divides the double-precision floating-point
number in DRn by the double-precision floating-point number in DRm, and writes the result to
DRn.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.
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Operation

void FDIV(int m,n)     /* FDIV FRm,FRn */
{
     pc += 2;
     clear_cause();
     if((data_type_of(m) == sNaN) ||
        (data_type_of(n) == sNaN)) invalid(n);
     else if((data_type_of(m) == qNaN) ||
             (data_type_of(n) == qNaN)) qnan(n);
     else switch (data_type_of(m)){

case NORM: switch (data_type_of(n)){
case PINF:
case NINF: inf(n,sign_of(m)^sign_of(n));break;
case PZERO:
case NZERO: zero(n,sign_of(m)^sign_of(n));break;
case DENORM: set_E(); break;
default: normal_fdiv(m,n); break;

               }      break;
case PZERO: switch (data_type_of(n)){

case PZERO:
case NZERO: invalid(n);break;
case PINF:
case NINF: break;
default: dz(n,sign_of(m)^sign_of(n));break;

 }     break;
case NZERO: switch (data_type_of(n)){

case PZERO:
case NZERO: invalid(n); break;
case PINF: inf(n,1); break;
case NINF: inf(n,0); break;
default: dz(FR[n],sign_of(m)^sign_of(n)); break;

               }      break;
case DENORM: set_E(); break;
case PINF :
case NINF : switch (data_type_of(n)){

case PINF:
case NINF: invalid(n);     break;

default: zero(n,sign_of(m)^sign_of(n));break

               }      break;

}
}
void normal_fdiv(int m,n)
{
union {

float f;
int l;

} dstf,tmpf;
union {

double d;
int l[2];

} dstd,tmpd;

union {
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int double x;
int l[4];

} tmpx;
if(FPSCR_PR == 0) {

tmpf.f = FR[n]; /* save destination value */
dstf.f /= FR[m]; /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= FR[m];
if(tmpf.f != tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

dstf.l -= 1; /* round toward zero */
check_single_exception(&FR[n], dstf.f);

} else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d /= DR[m>>1]; /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= DR[m>>1];
if(tmpd.d != tmpx.x) set_I();
if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

dstd.l[1] -= 1; /* round toward zero */
if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

}
check_double_exception(&DR[n>>1], dstd.d);

}
}

FDIV Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM NaN sNaN

NORM DIV 0 INF Error

+0 DZ Invalid +INF -INF DZ

–0 -INF +INF

+INF 0 +0 –0 Invalid

–INF –0 +0

DENORM Error

qNaN qNaN

sNaN Invalid
Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Divide by zero
Overflow
Underflow
Inexact
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FIPR (Floating Point Inner Product): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FIPR FVm,FVn FVm•FVn ∅ FR[n+3] 1111nnmm11101101 —

1 — reserved 1111nnmm11101101 —

Note: FV0 = {FR0, FR1, FR2, FR3}
FV4 = {FR4, FR5, FR6, FR7}
FV8 = {FR8, FR9, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

Writes the inner products of the single-precision floating-point vector in FVm and the single-
precision floating-point vector in FVn to single-precision floating-point register FR[n+3].

The operation is sometimes more or less accurate than the calculation using FMUL and FMAC
because of the algorism difference. The order of the operations is as follows:

1. Multiplication of terms (result of each term is 30 digits)

2. Digit alignment (truncation below 30 digits)

3. Addition of all terms

4. Normalization, rounding

Special cases are as follows:

1. If the input operands include sNaN: invalid operation

2. If the input operands for a term are infinity and zero: invalid operation

3. If the input operands include qNaN, other than as above, the result is qNaN.

4. If the input operands include infinity, other than as above:

a. If the multiplication results for two terms or more are infinity and not of the same sign:
invalid operation

b. Other than the above, the result is infinity with the proper sign.

5. If the input operands do not include sNaN, qNaN, or infinity: the same as for a normal
instruction

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.



217

Operation

void FIPR(int m,n)   /* FIPR FVm,FVn */

{

if(FPSCR_PR == 0) {

pc += 2;

clear_cause();

fipr(m,n);

}

else undefined_operation();

}

Exceptions

Invalid operation
Overflow
Underflow
Inexact
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FLDI0 (Floating Point Load 0.0): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FLDI0 FRn 0x00000000 ∅ FRn 1111nnnn10001101 —

1 — reserved 1111nnnn10001101 —

Description

When the PR bit in FPSCR is 0: Loads floating point zero(0x00000000) to the floating point
register FRn.

Operation

void FLDI0(int n)

{

     FR[n] = 0x00000000;

     pc += 2;

}

Exceptions

None
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FLDI1 (Floating Point Load 1.0): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FLDI1 FRn 0x3F800000 ∅ FRn 1111nnnn10011101 —

1 — reserved 1111nnnn10011101 —

Description

When the PR bit in FPSCR is 0: Loads floating point one (0x3F800000) to the floating point
register FRn.

Operation

void FLDI1(int n)

{

     FR[n] = 0x3F800000;

     pc += 2;

}

Exceptions
None
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FLDS (Floating Point Load to System Register): Floating-Point Instruction

Format Operation Instruction Code T Bit

FLDS FRm,FPUL FRm ∅ FPUL 1111mmmm00011101 —

Description

Copies the content of floating point register FRm to the system register FPUL.

Operation

void FLDS(int n)

{

     FPUL = FR[m];

     pc += 2;

}

Exceptions

None
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FLOAT (Floating Point Convert from Integer): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FLOAT FPUL,FRn (float)FPUL ∅ FRn 1111nnnn00101101 —

1 FLOAT FPUL,DRn (double)FPUL ∅ DRn 1111nnn000101101 —

Description

When the PR bit in FPSCR is 0: Converts the 32-bit integer value in FPUL to a single-precision
floating-point number, and writes the result to FRn.

When the PR bit in FPSCR is 1: Converts the 32-bit integer value in FPUL to a double-precision
floating-point number, and writes the result to DRn.

If the I bit in the FPSCR.enable field is enabled and FPSCR.PR is 0, an FPU exception trap will
be raised regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect
the actual FPU exception status, and FRn does not change. Appropriate actions must be taken by
software.

Operation

void FLOAT(int n)

{

union {

double d;

int l[2];

} tmp;

pc += 2;

clear_cause();

if(FPSCR.PR==0){

FR[n] = FPUL; /* convert from integer to float */

tmp.d = FPUL;

if(tmp.l[1] & 0x1fffffff) inexact();

} else {

DR[n>>1] = FPUL; /* convert from integer to double */

}

}

Exceptions

Inexact (not generated when FPSCR.PR = 1)
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FMAC (Floating Point Multiply and Accumulate): Floating-Point
Instruction

PR Format Operation Instruction Code T Bit

0 FMAC FR0,FRm,FRn FR0*FRm+FRn ∅ FRn 1111nnnnmmmm1110 —

1 — reserved 1111nnnnmmmm1110 —

Description

When the PR bit in FPSCR is 0: Floating-point-arithmetically multiplies the contents of floating
point registers FR0 and FRm. And the result of this operation is accumulated to floating point
register FRn. The operation is the fusion type, and the intermediate product is not rounded.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.

Operation

void FMAC(int m,n)
{

pc += 2;
clear_cause();
if(FPSCR_PR == 1) undefined_operation();
else if((data_type_of(0) == sNaN) ||

  (data_type_of(m) == sNaN) ||
  (data_type_of(n) == sNaN)) invalid(n);

else if((data_type_of(0) == qNaN) ||
 (data_type_of(m) == qNaN)) qnan(n);

else if((data_type_of(0) == DENORM) ||
 (data_type_of(m) == DENORM)) set_E();

else switch (data_type_of(0){
case NORM: switch (data_type_of(m)){

case PZERO:
case NZERO: switch (data_type_of(n)){

case DENORM: set_E(); break;
case qNaN: qnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));  break;
default: break;
}

case PINF:

case NINF: switch (data_type_of(n)){
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case DENORM: set_E(); break;
case qNaN: qnan(n); break;
case PINF:
case NINF: if(sign_of(0)^ sign_of(m)^sign_of(n)) invalid(n);

else inf(n,sign_of(0)^ sign_of(m)); break;
default: inf(n,sign_of(0)^ sign_of(m)); break;
}

case NORM: switch (data_type_of(n)){
case DENORM: set_E(); break;
case qNaN: qnan(n); break;
case PINF:
case NINF: inf(n,sign_of(n)); break;
case PZERO:
case NZERO:
case NORM: normal_fmac(m,n); break;

} break;
case PZERO:
case NZERO: switch (data_type_of(m)){

case PINF:
case NINF: invalid(n); break;
case PZERO:
case NZERO:
case NORM: switch (data_type_of(n)){

case DENORM: set_E(); break;
case qNaN: qnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));  break;
default: break;
} break;

} break;
case PINF :
case NINF : switch (data_type_of(m)){

case PZERO:
case NZERO: invalid(n); break;
default: switch (data_type_of(n)){

case DENORM: set_E(); break;
case qNaN: qnan(n); break;
default: inf(n,sign_of(0)^sign_of(m)^sign_of(n));break
}      break;

} break;
}

}
void normal_fmac(int m,n)
{
union {

int double x;
int l[4];

} dstx,tmpx;
float dstf,srcf;

if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denormalized value */

else srcf = FR[n];
tmpx.x = FR[0]; /* convert single to int double */
tmpx.x *= FR[m]; /* exact product */
dstx.x = tmpx.x + srcf;
if(((dstx.x == srcf) && (tmpx.x != 0.0)) ||

((dstx.x == tmpx.x) && (srcf != 0.0))) {
set_I();
if(sign_of(0)^ sign_of(m)^ sign_of(n))  {

dstx.l[3] -= 1; /* correct result */
if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;
if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;
if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;

}
else dstx.l[3] |= 1;

}
if((dstx.l[1] & 0x01ffffff) || dstx.l[2] || dstx.l[3]) set_I();
if(FPSCR_RM == 1) {

dstx.l[1] &= 0xfe000000; /* round toward zero */
dstx.l[2]  = 0x00000000;
dstx.l[3]  = 0x00000000;
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}
dstf = dstx.x;
check_single_exception(&FR[n],dstf);

}

FMAC Special Cases

FRn FR0 FRm

+Norm -Norm +0 –0 +INF –INF Denorm qNaN sNaN

Norm Norm MAC INF

0 Invalid

INF INF Invalid INF

+0 Norm MAC

0 +0 Invalid

INF INF Invalid INF

–0 +Norm MAC +0 –0 +INF –INF

-Norm –0 +0 –INF +INF

+0 +0 –0 +0 –0 Invalid

-0 –0 +0 –0 +0

INF INF Invalid INF

+INF +Norm +INF Invalid

-Norm +INF

0 Invalid

+INF Invalid +INF

–INF Invalid +INF +INF

–INF +Norm –INF –INF

-Norm

0

+INF Invalid Invalid –INF

–INF –INF –INF Invalid

Denorm Norm

0 Invalid

INF Invalid

!NaN Denorm Error

qNaN 0 Invalid

INF Invalid

Norm

!NaN qNaN qNaN

all types sNaN

sNaN all types Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Overflow
Underflow
Inexact
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FMOV (Floating Point Move): Floating-Point Instruction

SZ Format Operation Instruction Code T Bit

0 FMOV FRm,FRn FRm ∅ FRn 1111nnnnmmmm1100 —

1 FMOV DRm,DRn DRm ∅ DRn 1111nnn0mmm01100 —

0 FMOV.S FRm,@Rn FRm ∅ (Rn) 1111nnnnmmmm1010 —

1 FMOV DRm,@Rn DRm ∅ (Rn) 1111nnnnmmm01010 —

0 FMOV.S @Rm,FRn (Rm) ∅ FRn 1111nnnnmmmm1000 —

1 FMOV @Rm,DRn (Rm) ∅ DRn 1111nnn0mmmm1000 —

0 FMOV.S @Rm+,FRn (Rm) ∅ FRn, Rm+=4 1111nnnnmmmm1001 —

1 FMOV @Rm+,DRn (Rm) ∅ DRn, Rm+=8 1111nnn0mmmm1001 —

0 FMOV.S FRm,@–Rn Rn–=4, FRm ∅ (Rn) 1111nnnnmmmm1011 —

1 FMOV DRm,@–Rn Rn–=8, DRm ∅ (Rn) 1111nnnnmmm01011 —

0 FMOV.S @(R0,Rm),FRn (R0+Rm) ∅ FRn 1111nnnnmmmm0110 —

1 FMOV @(R0,Rm),DRn (R0+Rm) ∅ DRn 1111nnn0mmmm0110 —

0 FMOV.S FRm,@(R0,Rn) FRm ∅ (R0+Rn) 1111nnnnmmmm0111 —

1 FMOV DRm,@(R0,Rn) DRm ∅ (R0+Rn) 1111nnnnmmm00111 —

Description

1. Transfers the contents of FRm to FRn.

2. Transfers the contents of DRm to DRn.

3. Stores the contents of FRm into memory, using the contents of Rn as the effective address.

4. Stores the contents of DRm into memory, using the contents of Rn as the effective address.

5. Loads data from memory into FRn, using the contents of Rm as the effective address.

6. Loads data from memory into DRn, using the contents of Rm as the effective address.

7. Loads data from memory into FRn, using the contents of Rm as the effective address, and
then increments the value in Rm by 4.

8. Loads data from memory into DRn, using the contents of Rm as the effective address, and
then increments the value in Rm by 8.

9. First decrements the value in Rn by 4, and then stores the contents of FRm into memory,
using the contents of Rn as the effective address.

10. First decrements the value in Rn by 8, and then stores the contents of DRm into memory,
using the contents of Rn as the effective address.

11. Loads data from memory into FRn, using the sum of the contents of R0 and Rm as the
effective address.

12. Loads data from memory into DRn, using the sum of the contents of R0 and Rm as the
effective address.
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13. Stores the contents of FRm into memory, using the sum of the contents of R0 and Rn as the
effective address.

14. Stores the contents of DRm into memory, using the sum of the contents of R0 and Rn as the
effective address.

Operation

void FMOV(int m,n)                 /* FMOV FRm,FRn */
{
     FR[n] = FR[m];
     pc += 2;
}
void FMOV_DR(int m,n)           /* FMOV DRm,DRn */
{
     DR[n>>1] = DR[m>>1];
     pc += 2;
}
void FMOV_STORE(int m,n)       /* FMOV.S FRm,@Rn */
{
     store_int(FR[m],R[n]);
     pc += 2;
}
void FMOV_STORE_DR(int m,n)   /* FMOV DRm,@Rn */
{
     store_quad(DR[m>>1],R[n]);
     pc += 2;
}
 void FMOV_LOAD(int m,n)       /* FMOV.S @Rm,FRn */
{
     load_int(R[m],FR[n]);
     pc += 2;
}
void FMOV_LOAD_DR(int m,n)    /* FMOV @Rm,DRn */
{
     load_quad(R[m],DR[n>>1]);
     pc += 2;
}
void FMOV_RESTORE(int m,n)     /* FMOV.S @Rm+,FRn */
{
     load_int(R[m],FR[n]);
     R[m] += 4;
     pc += 2;
}

void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */

{
     load_quad(R[m],DR[n>>1]) ;
     R[m] += 8;
     pc += 2;
}
void FMOV_SAVE(int m,n)        /* FMOV.S FRm,@–Rn */
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{
     store_int(FR[m],R[n]-4);
     R[n] -= 4;
     pc += 2;
}
void FMOV_SAVE_DR(int m,n)    /* FMOV DRm,@–Rn */
{
     store_quad(DR[m>>1],R[n]-8);
     R[n] -= 4;
     pc += 2;

}

void FMOV_INDEX_LOAD(int m,n)  /* FMOV.S @(R0,Rm),FRn */
{
     load_int(R[0] + R[m],FR[n]);
     pc += 2;
}
void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV @(R0,Rm),DRn */
{
     load_quad(R[0] + R[m],DR[n>>1]);
     pc += 2;
}
void FMOV_INDEX_STORE(int m,n)  /*FMOV.S FRm,@(R0,Rn)*/
{
     store_int(FR[m], R[0] + R[n]);
     pc += 2;
}
void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/
{
     store_quad(DR[m>>1], R[0] + R[n]);
     pc += 2;
}

Exceptions

Data TLB miss exception
Data protection violation exception
Initial write exception
Address error
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FMOV (Floating Point Move Extension): Floating-Point Instruction

SZ Format Operation Instruction Code T Bit

1 FMOV XDm,@Rn XDm ∅ (Rn) 1111nnnnmmm11010 —

1 FMOV @Rm,XDn (Rm) ∅ XDn 1111nnn1mmmm1000 —

1 FMOV @Rm+,XDn (Rm) ∅ XDn, Rm+=8 1111nnn1mmmm1001 —

1 FMOV XDm,@–Rn Rn–=8,  XDm ∅ (Rn) 1111nnnnmmm11011 —

1 FMOV @(R0,Rm),XDn (R0+Rm) ∅ XDn 1111nnn1mmmm0110 —

1 FMOV XDm,@(R0,Rn) XDm ∅ (R0+Rn) 1111nnnnmmm10111 —

1 FMOV XDm,XDn XDm ∅ XDn 1111nnn1mmm11100 —

1 FMOV XDm,DRn XDm ∅ DRn 1111nnn0mmm11100 —

1 FMOV DRm,XDn DRm ∅ XDn 1111nnn1mmm01100 —

Description

1. Stores the contents of XDm into memory, using the contents of Rn as the effective address.

2. Loads data from memory into XDn, using the contents of Rm as the effective address.

3. Loads data from memory into XDn, using the contents of Rm as the effective address, and
then increments the value in Rm by 8.

4. First decrements the value in Rn by 8, and then stores the contents of XDm in memory, using
the contents of Rn as the effective address.

5. Loads data from memory into XDn, using the sum of the contents of R0 and Rm as the
effective address.

6. Stores the contents of XDm into memory, using the sum of the contents of R0 and Rn as the
effective address.

7. Transfers the contents of XDm to XDn.

8. Transfers the contents of XDm to DRn.

9. Transfers the contents of DRm to XDn.
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Operation

void FMOV_STORE_XD(int m,n)      /* FMOV XDm,@Rn */
{
     store_quad(XD[m>>1],R[n]);
     pc += 2;
}
void FMOV_LOAD_XD(int m,n)      /* FMOV @Rm,XDn */
{

load_quad(R[m],XD[n>>1]);
pc += 2;

}
void FMOV_RESTORE_XD(int m,n)   /* FMOV @Rm+,DBn */
{

load_quad(R[m],XD[n>>1]);
R[m] += 8;
pc += 2;

}
void FMOV_SAVE_XD(int m,n)      /* FMOV XDm,@–Rn */
{

store_quad(XD[m>>1],R[n]-8);
R[n] -= 8;
pc += 2;

}
void FMOV_INDEX_LOAD_XD(int m,n) /* FMOV @(R0,Rm),XDn */
{

load_quad(R[0] + R[m],XD[n>>1]);
pc += 2;

}
void FMOV_INDEX_STORE_XD(int m,n) /* FMOV XDm,@(R0,Rn) */
{
     store_quad(XD[m>>1], R[0] + R[n]);
     pc += 2;
}
 void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */
{
     XD[n>>1] = XD[m>>1];
     pc += 2;
}
void FMOV_XDDR(int m,n) /* FMOV XDm,DRn */
{
     DR[n>>1] = XD[m>>1];
     pc += 2;
}
void FMOV_DRXD(int m,n) /* FMOV DRm,XDn */
{
     XD[n>>1] = DR[m>>1];
     pc += 2;
}

Exceptions

Data TLB miss exception
Data protection violation exception
Initial wrie exception
Address error
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FMUL (Floating Point Multiply): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FMUL FRm,FRn FRn*FRm ∅ FRn 1111nnnnmmmm0010 —

1 FMUL DRm,DRn DRn*DRm ∅ DRn 1111nnn0mmm00010 —

Description

When the PR bit in FPSCR is 0: Arithmetically multiplies together the two single-precision
floating-point numbers in FRm and FRn, and writes the result to FRn.

When the PR bit in FPSCR is 1: Arithmetically multiplies together the two double-precision
floating-point numbers in DRm and DRn, and writes the result to DRn.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.

Operation

void FMUL(int m,n)
{
    pc += 2;

clear_cause();
if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);
else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m){

case NORM: switch (data_type_of(n)){
case PZERO:
case NZERO: zero(n,sign_of(m)^sign_of(n));  break;
case PINF:
case NINF: inf(n,sign_of(m)^sign_of(n));  break;
default: normal_fmul(m,n); break;

       }       break;
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case PZERO:
case NZERO: switch (data_type_of(n)){

case PINF:
case NINF: invalid(n); break;
default: zero(n,sign_of(m)^sign_of(n));break;

       }      break;
case PINF :
case NINF : switch (data_type_of(n)){

case PZERO:
case NZERO: invalid(n); break;
default: inf(n,sign_of(m)^sign_of(n));break

       }      break;
}

}

FMUL Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM MUL 0 INF

+0 0 +0 –0 Invalid

–0 –0 +0

+INF INF Invalid +INF –INF

–INF –INF +INF

DENORM Error

qNaN qNaN

sNaN Invalid
Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Overflow
Underflow
Inexact
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FNEG (Floating Point Negate): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FNEG  FRn –FRn ∅ FRn 1111nnnn01001101 —

1 FNEG  DRn –DRn ∅ DRn 1111nnn001001101 —

Description

Inverts the most significant bit (sign bit) of the floating-point number in FRn/DRn, and writes
the result to FRn/DRn. FPSCR.cause field and FPSCR.flag field do not change.

Operation

void FNEG (int n){

     FR[n] = -FR[n];

     pc += 2;

}

/* The same operation is performed regardless of the precision. */



233

FRCHG (FR-Bit Change): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FRCHG ~FPSCR.FR ∅ FPSCR.FR 1111101111111101 —

1 — reserved 1111101111111101 —

Description

Inverts the FR bit in floating-point status register FPSCR. When the FR bit in FPSCR is
changed, the mapping of FR0 to FR15 and XR0 to XR15 corresponding to FPPR0 to FPPR31 is
changed. When FPSCR.FR = 0, FR0 to FR15 correspond to FPPR0 to FPPR15, and XR0 to
XR15 correspond to FPPR6 to FPPR31; when FPSCR.FR = 1, FR0 to FR15 correspond to
FPPR6 to FPPR31, and XR0 to XR15 correspond to FPPR0 to FPPR15.

Operation

void FRCHG()   /* FRCHG */

{

if(FPSCR_PR == 0){

FPSCR ^= 0x00200000; /* bit 21 */

PC += 2;

}

else undefined_operation();

}
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FSCHG (SZ-Bit Change): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FSCHG ~FPSCR.SZ ∅ FPSCR.SZ 1111001111111101 —

1 — reserved 1111001111111101 —

Description

Inverts the SZ bit in floating-point status register FPSCR. When the SZ bit in FPSCR is changed,
the transfer size of FMOV instructions is changed. When FPSCR.SZ = 0, the transfer size is 32
bit;when FPSCR.SZ = 1, the transfer size is 64 bit.

Operation

void FSCHG()   /* FSCHG */

{

if(FPSCR_PR == 0){

FPSCR ^= 0x00100000; /* bit 20 */

PC += 2;

}

else undefined_operation();

}
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FSQRT (Floating Point Square Root): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FSQRT FRn FRn ∅ FRn 1111nnnn01101101 —

1 FSQRT DRn DRn ∅ DRn 1111nnn001101101 —

Description

When the PR bit in FPSCR is 0: Writes the square root of the single-precision floating-point
number in FRn to FRn.

When the PR bit in FPSCR is 1: Writes the square root of the double-precision floating-point
number in DRn to DRn.

If the I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.

Operation

void FSQRT(int n){
pc += 2;
clear_cause();
switch(data_type_of(n)){

case NORM  : if(sign_of(n) == 0) normal_ fsqrt(n);
                      else invalid(n); break;

case DENORM: if(sign_of(n) == 0) set_E();
                      else invalid(n); break;

case PZERO :
case NZERO :
case PINF  :     break;
case NINF  :     invalid(n);break;
case qNaN  :     qnan(n); break;
case sNaN  :     invalid(n);break;

}
}
void normal_fsqrt(int n)
{
union {

float f;
int l;

} dstf,tmpf;
union {

double d;
int l[2];
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} dstd,tmpd;
union {

int double x;
int l[4];

} tmpx;
if(FPSCR_PR == 0) {

tmpf.f = FR[n]; /* save destination value */
dstf.f = sqrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= dstf.f;
if(tmpf.f != tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

dstf.l -= 1; /* round toward zero */
if(FPSCR & ENABLE_I) fpu_exception_trap();
else FR[n] = dstf.f;

} else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= dstd.d;
if(tmpd.d != tmpx.x) set_I();
if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

dstd.l[1] -= 1; /* round toward zero */
if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

}
if(FPSCR & ENABLE_I) fpu_exception_trap();
else DR[n>>1] = dstd.d;

}
}

FSQRT Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FSQRT(FRn) SQRT Invalid +0 –0 +INF Invalid qnan Invalid

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Inexact
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FSTS (Floating Point Store System Register): Floating-Point Instruction

Format Operation Instruction Code T Bit

FSTS FPUL,FRn FPUL ∅ FRn 1111nnnn00001101 —

Description

Copies the content of the system register FPUL to floating point register FRn.

Operation

void FSTS(int n)

{

     FR[n] = FPUL;

     pc += 2;

}

Exceptions

None
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FSUB (Floating Point Subtract): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FSUB FRm,FRn FRn–FRm ∅ FRn 1111nnnnmmmm0001 —

1 FSUB DRm,DRn DRn–DRm ∅ DRn 1111nnn0mmm00001 —

Description

When the PR bit in FPSCR is 0: Arithmetically subtracts the single-precision floating-point
number in FRm from the single-precision floating-point number in FRn, and writes the result to
FRn.

When the PR bit in FPSCR is 1: Arithmetically subtracts the double-precision floating-point
number in DRm from the double-precision floating-point number in DRn, and writes the result
to DRn.

If the O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be raised
regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the actual
FPU exception status, and FRn or DRn does not change. Appropriate actions must be taken by
software.

Operation

void FSUB (int m,n)
{

pc += 2;
clear_cause();
if((data_type_of(m) == sNaN) ||

(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);
else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)){

case NORM: switch (data_type_of(n)){
case NORM: normal_faddsub(m,n,SUB); break;
case PZERO:

 case NZERO: register_copy(m,n); FR[n] = -FR[n];break;
default: break;

  } break;
case PZERO: break;
case NZERO: switch (data_type_of(n)){

case NZERO: zero(n,0); break;
default: break;

} break;
case PINF: switch (data_type_of(n)){

case PINF: invalid(n);     break;
default: inf(n,1);       break;

} break;
case NINF: switch (data_type_of(n)){

case NINF: invalid(n);     break;
default: inf(n,0);       break;

} break;
}

}
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FSUB Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM SUB +INF –INF

+0 –0

–0 +0

+INF –INF Invalid

–INF +INF Invalid

DENORM Error

qNaN qNaN

sNaN Invalid
Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Overflow
Underflow
Inexact
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FTRC (Floating Point Truncate and Convert to Integer): Floating-Point
Instruction

PR Format Operation Instruction Code T Bit

0 FTRC FRm,FPUL (long)FRm ∅ FPUL 1111mmmm00111101 —

1 FTRC DRm,FPUL (long)DRm ∅ FPUL 1111mmm000111101 —

Description

When the PR bit in FPSCR is 0: Converts the single-precision floating-point number in FRm to
an integer, and writes this number to FPUL.

When the PR bit in FPSCR is 1: Converts the double-precision floating-point number in DRm to
an integer, and writes this number to FPUL.

The rounding method used in conversion is always to discard the fractional part.

If the I bit in the FPSCR.enable field is enabled, an FPU exception will be generated before
execution, and therefore appropriate action must be taken by software.
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Operation

#define N_INT_SINGLE_RANGE 0xcf000000  /* -1.000000 * 2^31 */
#define P_INT_SINGLE_RANGE 0x4effffff  /* 1.fffffe * 2^30 */
#define N_INT_DOUBLE_RANGE 0xc1e00000  /* higher of -1.0000000000000 * 2^31 */
#define P_INT_DOUBLE_RANGE 0x41dfffff  /* higher of  1.fffffffffffff * 2^30 */

void FTRC(int m)
{
     pc += 2;
     clear_cause();
     if(FPSCR.PR==0){
          case(ftrc_single_ type_of(m)){
          NORM:     FPUL = FR[m];   break;
          PINF:     ftrc_invalid(0); break;
          NINF:     ftrc_invalid(1); break;
          }
     }
     else{                  /* case FPSCR.PR=1 */
          case(ftrc_double_type_of(m)){
          NORM:     FPUL = DR[m>>1]; break;
          PINF:     ftrc_invalid(0); break;
          NINF:     ftrc_invalid(1); break;
          }
     }
}
int ftrc_signle_type_of(int m)
{

if(sign_of(m) == 0){
if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */
else if(FR_HEX[m] > P_INT_SINGLE_RANGE)

return(PINF); /* out of range,+INF */
else return(NORM); /* +0,+NORM          */

} else {
if(FR_HEX[m]< N_INT_SINGLE_RANGE)

return(NINF); /* out of range ,+INF,NaN*/
else return(NORM); /* -0,-NORM              */

     }
}
int ftrc_double_type_of(int m)
{

if(sign_of(m) == 0){
if((FR_HEX[m] > 0x7ff00000) ||
  ((FR_HEX[m] == 0x7ff00000) &&
   (FR_HEX[m+1] != 0x00000000)))   return(NINF);      /* NaN */
else if(FR_HEX[m]  > P_INT_DOUBLE_RANGE)

return(PINF); /* out of range,+INF */
else return(NORM); /* +0,+NORM          */

} else {
if(FR_HEX[m] < N_INT_DOUBLE_RANGE)

return(NINF); /* out of range ,+INF,NaN*/
else return(NORM); /* -0,-NORM              */

}
}
void ftrc_invalid(int sign)
{
     set_V();
if((FPSCR & ENABLE_V) == 0){
            if(sign == 0)     FPUL = 0x7fffffff;
            else              FPUL = 0x80000000;
     }
     else fpu_exception_trap();
}
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FTRC Special Cases

FRn,DRn NORM +0 –0

Positive
Out of
Range

Negative
Out of
Range +INF –INF qNaN sNaN

FTRC
(FRn,DRn)

TRC 0 0 Invalid
+MAX

Invalid
–MAX

Invalid
+MAX

Invalid
–MAX

Invalid
–MAX

Invalid
–MAX

Note: When DN = 1, a denormalized number is treated as zero.

Exceptions

FPU error
Invalid operation
Inexact
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FTRV (Floating Point Transform Vector): Floating-Point Instruction

PR Format Operation Instruction Code T Bit

0 FTRV XMTRX,FVn XMTRX*FVn ∅ FVn 1111nn0111111101 —

1 — reserved 1111nn0111111101 —

Description

When the PR bit in the FPSCR register is 0: Finds the matrix products of the 4-row/4-column
conversion matrix XMTRX comprising floating-point registers XF0 to XF15, and vector FVn
comprising floating-point registers FRn to FR[n+3], and writes the result of the operation in
FVn.

XMTRX FVn FVn

XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]

XF[1] XF[5] XF[9] XF[13] ∞ FR[n+1] ∅ FR[n+1]

XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]

XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]

The operation is sometimes more or less accurate than the calculation using FMUL and FMAC
because of the algorism difference. The order of the operations is as follows:

1. Multiplication of terms (result of each term is 30 digits)

2. Digit alignment, truncation below 30 digits

3. Addition of all terms

4. Normalization, rounding

Special cases are as follows:

1. If the input operands include sNaN: invalid operation

2. If the input operands for a term are infinity and zero: invalid operation

3. If the input operands include qNaN, other than as above, the result is qNaN.

4. If the input operands include infinity, other than as above:

a. If the multiplication results for two terms or more are infinity and not of the same sign:
invalid operation

b. Other than the above, the result is infinity with the proper sign.

5. If the input operands do not include sNaN, qNaN, or infinity: the same as for a normal
instruction
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If the V, O, U, or I bit in the FPSCR.enable field is enabled, an FPU exception trap will be
raised regardeless of the exception occurrence, FPSCR.cause and FPSCR.flag fields reflect the
actual FPU exception status, and FRn or DRn does not change. Appropriate actions must be
taken by software.

Operation

void FTRV (int n)     /* FTRV FVn */

{

float saved_vec[4],result_vec[4];

int saved_fpscr;

int dst,i;

if(FPSCR_PR == 0) {

PC += 2;

clear_cause();

saved_fpscr  = FPSCR;

FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */

dst = 12 - n; /* select other vector than FVn */

for(i=0;i<4;i++) saved_vec [i] = FR[dst+i];

for(i=0;i<4;i++) {

for(j=0;j<4;j++) FR[dst+j] = XF[i+4j];

fipr(n,dst);

result_vec [i] = FR[dst+3];

}

for(i=0;i<4;i++) FR[dst+i] = saved_vec [i];

FPSCR = saved_fpscr;

if(FPSCR & ENABLE_VOUI) fpu_exception_trap();

else for(i=0;i<4;i++) FR[n+i] = result_vec [i];

}

else undefined_operation();

}

Exceptions

Invalid operation
Overflow
Underflow
Inexact
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JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code T Bit

JMP @Rn Rn ∅ PC 0100nnnn00101011 —

Description: branches unconditionally to an address specified with Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the
next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

JMP(int n) /* JMP @Rn */

{

Delay_Slot(PC+2);

PC=R[n];

}

Examples:

MOV.L JMP_TABLE,R0 Address of R0 = TRGET

JMP @R0Branches to TRGET

MOV R0,R1 Executes MOV before branching

.align  4

JMP_TABLE: .data.l TRGET Jump table

.................

TRGET: ADD #1,R1 ♦ Branch destination
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JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code T Bit

JSR @Rn PC + 4 ∅ PR, Rn ∅ PC 0100nnnn00001011 —

Description: Branches to the subroutine at a specified address after executing the instruction
following this JSR instruction. The return address (PC+4) is stored in PR. The jump target is an
address specified with general register Rn. The JSR instruction and RTS instruction are used for
subroutine calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the
next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

JSR(int n) /* JSR @Rn  */

{

PR=PC+4;

Delay_Slot(PC+2);

PC=R[n];

}

Examples:

MOV.L JSR_TABLE,R0 R0 = address of TRGET

JSR @R0Branches to TRGET

XOR R1,R1 Executes XOR before branching

ADD R0,R1 ♦ Return address for when the subroutine procedure is completed (PR data)

...........

.align  4

JSR_TABLE: .data.l TRGET Jump table

TRGET: NOP ♦ Procedure entrance

MOV R2,R3

RTS Returns to the above ADD instruction

MOV #70,R1 Executes MOV before RTS
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LDC (Load to Control Register): System Control Instruction
(Privileged Instruction)

Format Operation Instruction Code T Bit

LDC Rm,SR

LDC Rm,GBR

LDC Rm,VBR

LDC Rm,SSR

LDC Rm,SPC

LDC Rm,DBR

LDC Rm,R0_BANK

LDC Rm,R1_BANK

LDC Rm,R2_BANK

LDC Rm,R3_BANK

LDC Rm,R4_BANK

LDC Rm,R5_BANK

LDC Rm,R6_BANK

LDC Rm,R7_BANK

LDC.L @Rm+,SR

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

LDC.L @Rm+,SSR

LDC.L @Rm+,SPC

LDC.L @Rm+,DBR

LDC.L @Rm+,R0_BANK

LDC.L @Rm+,R1_BANK

LDC.L @Rm+,R2_BANK

LDC.L @Rm+,R3_BANK

LDC.L @Rm+,R4_BANK

LDC.L @Rm+,R5_BANK

LDC.L @Rm+,R6_BANK

LDC.L @Rm+,R7_BANK

Rm ∅ SR

Rm ∅ GBR

Rm ∅ VBR

Rm ∅ SSR

Rm ∅ SPC

Rm ∅ DBR

Rm ∅ R0_BANK

Rm ∅ R1_BANK

Rm ∅ R2_BANK

Rm ∅ R3_BANK

Rm ∅ R4_BANK

Rm ∅ R5_BANK

Rm ∅ R6_BANK

Rm ∅ R7_BANK

(Rm) ∅ SR, Rm+4 ∅ Rm

(Rm) ∅ GBR, Rm+4 ∅ Rm

(Rm) ∅ VBR, Rm+4 ∅ Rm

(Rm) ∅ SSR, Rm+4 ∅ Rm

(Rm) ∅ SPC, Rm+4 ∅ Rm

(Rm) ∅ DBR, Rm+4 ∅ Rm

(Rm) ∅ R0_BANK, Rm+4 ∅ Rm

(Rm) ∅ R1_BANK, Rm+4 ∅ Rm

(Rm) ∅ R2_BANK, Rm+4 ∅ Rm

(Rm) ∅ R3_BANK, Rm+4 ∅ Rm

(Rm) ∅ R4_BANK, Rm+4 ∅ Rm

(Rm) ∅ R5_BANK, Rm+4 ∅ Rm

(Rm) ∅ R6_BANK, Rm+4 ∅ Rm

(Rm) ∅ R7_BANK, Rm+4 ∅ Rm

0100mmmm00001110

0100mmmm00011110

0100mmmm00101110

0100mmmm00111110

0100mmmm01001110

0100mmmm11111010

0100mmmm10001110

0100mmmm10011110

0100mmmm10101110

0100mmmm10111110

0100mmmm11001110

0100mmmm11011110

0100mmmm11101110

0100mmmm11111110

0100mmmm00000111

0100mmmm00010111

0100mmmm00100111

0100mmmm00110111

0100mmmm01000111

0100mmmm11110110

0100mmmm10000111

0100mmmm10010111

0100mmmm10100111

0100mmmm10110111

0100mmmm11000111

0100mmmm11010111

0100mmmm11100111

0100mmmm11110111

LSB

—

—

—

—

—

—

—

—

—

—

—

—

—

LSB

—

—

—

—

—

—

—

—

—

—

—

—

—
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Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC,
DBR, or R0_BANK to R7_BANK. With the exception of LDC Rm,GBR and LDC.L @–
Rn,GBR, the LDC and LDC.L instructions are privileged instructions and can only be used in
privileged mode. Use in user mode will cause an illegal instruction exception. However, LDC
Rm,GBR and LDC.L @–Rm,GBR can also be used in user mode.

With LDC/LDC.L instructions accessing Rm_BANK, Rm_BANK0 is accessed when the RB bit
in the SR register is 1, and Rm_BANK1 is accessed when this bit is 0.

Operation

     LDCSR(int m)       /* LDC Rm,SR : Privileged */

     {

       SR=R[m]&0x700083F3;

       PC+=2;

     }

     LDCGBR(int m)      /* LDC Rm,GBR */

     {

       GBR=R[m];

       PC+=2;

     }

     LDCVBR(int m)      /* LDC Rm,VBR : Privileged */

     {

       VBR=R[m];

       PC+=2;

     }



249

     LDCSSR(int m)      /* LDC Rm,SSR : Privileged */

     {

       SSR=R[m];

       PC+2;

     }

     LDCSPC(int m)      /* LDC Rm,SPC : Privileged */

     {

       SPC=R[m];

       PC+=2;

     }

     LDCDBR(int m)      /* LDC Rm,DBR : Privileged */

     {

       DBR=R[m];

       PC+=2;

     }

     LDCRn_BANK(int m)  /* LDC Rm,Rn_BANK : Privileged */

                         /* n=0-7 */

     {

       Rn_BANK=R[m];

       PC+=2;

     }

     LDCMSR(int m)      /* LDC.L @Rm+,SR : Privileged */

     {

       SR=Read_Long(R[m])&0x700083F3;

       R[m]+=4;

       PC+=2;

     }

     LDCMGBR(int m)     /* LDC.L @Rm+,GBR */

     {

       GBR=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;
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     }

     LDCMVBR(int m)     /* LDC.L @Rm+,VBR : Privileged */

     {

       VBR=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;

     }

     LDCMSSR(int m)     /* LDC.L @Rm+,SSR : Privileged */

     {

       SSR=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;

     }

     LDCMSPC(int m)     /* LDC.L @Rm+,SPC : Privileged */

     {

       SPC=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;

     }

     LDCMDBR(int m)     /* LDC.L @Rm+,DBR : Privileged */

     {

       DBR=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;

     }

     LDCMRn_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */

                         /* n=0-7 */

     {

       Rn_BANK=Read_Long(R[m]);

       R[m]+=4;

       PC+=2;

    }
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Exceptions

General illegal instruction exception
Illegal slot instruction exception
Data TLB miss exception
Data TLB protection violation exception
Address error

LDS (Load to FPU System Register): System Control Instruction

No
.

Format Abstract Code T Bit

1 LDS Rm ,FPUL  Rm->FPUL 0100mmmm01011010 —

2 LDS.L @Rm+,FPUL  (Rm)->FPUL, Rm+=4 0100mmmm01010110 —

3 LDS Rm ,FPSCR  Rm->FPSCR 0100mmmm01101010 —

4 LDS.L @Rm+,FPSCR  (Rm)->FPSCR, Rm+=4 0100mmmm01100110 —

Description:

1. Copies the content of general purpose register Rm to system register FPUL.

2. Loads the content of the memory location addressed by general register Rm. The result of
this operation is written to system register FPUL. Upon completion, the value in Rm is
incremented by 4.

3. Copies the content of general purpose register Rm to system register FPSCR. The
predetermined bits of FPSCR remain unchanged.

4. Loads the content of the memory location addressed by general register Rm. The result of
this operation is written to system register FPSCR. Upon completion, the value in Rm is
incremented by 4. The predetermined bits of FPSCR remain unchanged.
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Operation:

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int  m) /* LDS Rm,FPUL  */

{

FPUL=R[m];

PC+=2;

}

LDSMFPUL(int  m) /* LDS.L @Rm+,FPUL  */

{

FPUL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSFPSCR(int  m) /* LDS Rm,FPSCR  */

{

FPSCR=R[m] & FPSCR_MASK;

PC+=2;

}

LDSMFPSCR(int  m) /* LDS.L @Rm+,FPSCR  */

{

FPSCR=Read_Long(R[m]) & FPSCR_MASK;

R[m]+=4;

PC+=2;

}

Exceptions:

Data TLB miss exception
Data Access Protection exception
Address Error.
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Examples:

• LDS

Example 1:
MOV.L #h'12345678, R2 ; Before executing the LDS and FSTS instructions:

; R2 = H'12345678

FLDI0 FR3 ; FR3 = 0

LDS R2, FPUL ; After executing the LDS and FSTS instructions:

; FPUL = H'12345678

FSTS FPUL, FR3 ; FR3 = H'12345678

Example 2:
MOV.L #h'00040801, R4 ; After executing the LDS instruction:

LDS R4, FPSCR ; FPSCR = H'00040801

• LDS.L

Example 1:
LDI0 FR0 ; Before executing the LDS.L and FSTS instructions:

MOV.L #h'87654321, R4 ; FR0 = 0

MOV.L #h'0C700128, R8 ; R8 = H'0C700128

MOV.L R4,@R8 ; After executing the LDS.L and FSTS instructions:

LDS.L @R8+, FPUL ; FR0 = H'87654321

FSTS FPUL, FR0 ; R8 = H'0C70012C

Example 2:
MOV.L #h'00040C01, R4 ;  Before executing the LDS.L instruction:

MOV.L #h'0C700134, R8 ;  R8 = H'0C700134

MOV.L R4,@R8 ; After executing the LDS.L instruction:

;  R8 = H'0C700138

LDS.L @R8+, FPSCR ;  FPSCR = H'00040C01
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LDS (Load to System Register): System Control Instruction

Format Abstract Code T Bit

LDS Rm,MACH Rm ∅ MACH 0100mmmm00001010 —

LDS Rm,MACL Rm ∅ MACL 0100mmmm00011010 —

LDS Rm,PR Rm ∅ PR 0100mmmm00101010 —

LDS.L @Rm+,MACH (Rm) ∅ MACH, Rm + 4 ∅ Rm 0100mmmm00000110 —

LDS.L @Rm+,MACL (Rm) ∅ MACL, Rm + 4 ∅ Rm 0100mmmm00010110 —

LDS.L @Rm+,PR (Rm) ∅ PR, Rm + 4 ∅ Rm 0100mmmm00100110 —

Description: Stores the source operand into the system registers MACH, MACL, or PR.

Operation:

LDSMACH(int m) /* LDS Rm,MACH  */
{

MACH=R[m];
PC+=2;

}
LDSMACL(int m) /* LDS Rm,MACL  */
{

MACL=R[m];
PC+=2;

}
LDSPR(int m) /* LDS Rm,PR  */
{

PR=R[m];
PC+=2;

}
LDSMMACH(int m) /* LDS.L @Rm+,MACH  */
{

MACH=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}
LDSMMACL(int m) /* LDS.L @Rm+,MACL  */
{

MACL=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}
LDSMPR(int m) /* LDS.L @Rm+,PR  */
{

PR=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}
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Examples:

LDS R0,PR Before execution R0 = H'12345678, PR = H'00000000

After execution PR = H'12345678

LDS.L @R15+,MACL Before execution R15 = H'10000000

After execution R15 = H'10000004, MACL = (H'10000000)
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LDTLB (Load PTEH/PTEL to TLB): System Control Instruction
(Privileged Only)

Format Abstract Code T Bit

LDTLB PTEH/PTEL ∅ TLB 0000000000111000 —

Description: Loads contents of PTEH/PTEL registers to a translation lookaside buffer (TLB)
specified with MMUCR.URC(Random Counter field in MMU Control Register). LDTLB is a
privileged instruction and can be used in privileged mode only. If used in user mode, it causes an
illegal instruction exception.

Note: As LDTLB is for loading PTEH and PTEL to the TLB, the instruction should be issued
when MMU is off (MMUCR.AT = 0) or should be placed in the P1 or P2 space with
MMU enabled (see section 3, MMU, of the SH-4 Hardware Manual). After an LDTLB
instruction is issued, there should be at least one instruction between the LDTLB
instruction and issuance of an instruction involving an access to the P0, U0, or P3 area:
BRAF, BSRF, JMP, JSR, RTS, and RTE.

Operation:

LDTLB()  /* LDTLB */

{

TLB[MMUCR.URC].ASID=PTEH&0x000000FF;

TLB[MMUCR.URC].VPN=(PTEH&0xFFFFFC00)>>10;

TLB[MMUCR.URC].PPN=(PTEL&0x1FFFFC00)>>10;

TLB[MMUCR.URC].SZ=(PTEL&0x00000080)>>6 | (PTEL&0x00000010)>>4;

TLB[MMUCR.URC].SH=(PTEL&0x00000002)>>1;

TLB[MMUCR.URC].PR=(PTEL&0x00000060)>>5;

TLB[MMUCR.URC].WT=(PTEL&0x00000001);

TLB[MMUCR.URC].C=(PTEL&0x00000008)>>3;

TLB[MMUCR.URC].D=(PTEL&0x00000004)>>2;

TLB[MMUCR.URC].V=(PTEL&0x00000100)>>8;

PC+=2;

}

Examples:

MOV @R0, R1 Load page table entry to R1

MOV R1, @R2 Load R1 to PTEL, R2 = H'FFFFFFF4

LDTLB Load PTEH/PTEL to TLB
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MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

Format Abstract Code T Bit

MAC.L @Rm+,@Rn+ Signed operation, (Rn) ∞ (Rm) +
MAC ∅ MAC, Rm + 4 ∅ Rm, Rn
+ 4 ∅ Rn

0000nnnnmmmm1111 —

Description: Does signed multiplication of 32-bit operands obtained using the contents of
general registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC
register, and the final result is stored in the MAC register. Every time an operand is read, Rm
and Rn are incremented by four.

When the S bit is equal to zero, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to between H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(int m,int n) /* MAC.L @Rm+,@Rn+ */
{

int src_m,src_n;
long mul,mac;

src_n=(int)Read_Long(R[n]);
R[n]+=4;
src_m=(int)Read_Long(R[m]);
R[m]+=4;

mul=(long)src_m*(long)src_n;
mac=(long)MACH<<32 | (long)MACL;
mac+=mul;

if(S==1){
if(mac>0x00007FFFFFFFFFFF)

mac=0x00007FFFFFFFFFFF;
else if(mac<0xFFFF800000000000)

mac=0xFFFF800000000000;
}
MACH=(unsined int)((unsigned long)mac)>>32;
MACL=(unsined int)(mac&0x00000000FFFFFFFF);
PC+=2;

}
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Examples:

MOVA TBLM,R0Table address

MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization

MAC.L @R0+,@R1+

MAC.L @R0+,@R1+

STS MACL,R0 Store result into R0

...............

.align 2

TBLM .data.l H'1234ABCD

.data.l H'5678EF01

TBLN .data.l H'0123ABCD

.data.l H'4567DEF0
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MAC.W (Multiply and Accumulate Word): Arithmetic Instruction

Format Abstract Code T Bit

MAC.W @Rm+,@Rn+ With sign, (Rn) ∞ (Rm) + MAC ∅ MAC,
Rm + 2 ∅ Rm, Rn + 2 ∅ Rn

0100nnnnmmmm1111 —

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm and
Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final result
is stored in the MAC register.

When the S bit is equal to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. Rm and Rn are incremented by 2.

When the bit S is equal to 1, the addition to the MAC register is a saturation operation. For the
saturation operation, only the MACL register is enabled and the result is limited to between
H'80000000 (minimum) and H'7FFFFFFF (maximum). If an overflow or an underflow occurs,
the LSB of the MACH register is set to 1. The other bits of MACH are undefined. The result is
stored in the MACL register, and the result is saturated to a value between H'80000000
(minimum) and H'7FFFFFFF (maximum).

Note: The content of higher 31bits of MACH is undefined value if S bit is equal to 1.

Operation:

MACW(int m,int n) /* MAC.W @Rm+,@Rn+ */
{

int src_m,src_n;
long mul,mac;

src_n=(int)Read_Word(R[n]);
R[n]+=2;
src_m=(int)Read_Word(R[m]);
R[m]+=2;

mul=(long)src_m*(long)src_n;
if(S==0){

mac=(long)MACH<<32 | ((long)MACL&0x00000000FFFFFFFF);
mac+=mul;
MACH=(unsigned int)((unsigned long)mac>>32);
MACL=(unsigned int)(mac&0x00000000FFFFFFFF);

}else{
if(MACL&0x80000000)

mac=(long)MACL | 0xFFFFFFFF00000000;
else mac=(long)MACL & 0x00000000FFFFFFFF;
mac+=mul;
if(mac>0x000000007FFFFFFF){

MACH|=0x00000001; MACL=0x7FFFFFFF;
}else if(mac<0xFFFFFFFF80000000){

MACH|=0x00000001; MACL=0x80000000;
}else{

MACH&=0xFFFFFFFE; MACL=(unsigned int)(mac&0x00000000FFFFFFFF);
}

}
PC+=2;

}
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Examples:

MOVA TBLM,R0 Table address
MOV R0,R1

MOVA TBLN,R0 Table address

CLRMAC MAC register initialization
MAC.W @R0+,@R1+
MAC.W @R0+,@R1+

STS MACL,R0 Store result into R0
...............
.align 2

TBLM .data.w H'1234
.data.w H'5678

TBLN .data.w H'0123
.data.w H'4567
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MOV (Move): Data Transfer Instruction

Format Abstract Code T Bit

MOV Rm,Rn Rm ∅ Rn 0110nnnnmmmm0011 —

MOV.B Rm,@Rn Rm ∅ (Rn) 0010nnnnmmmm0000 —

MOV.W Rm,@Rn Rm ∅ (Rn) 0010nnnnmmmm0001 —

MOV.L Rm,@Rn Rm ∅ (Rn) 0010nnnnmmmm0010 —

MOV.B @Rm,Rn (Rm) ∅ sign extension ∅ Rn 0110nnnnmmmm0000 —

MOV.W @Rm,Rn (Rm) ∅ sign extension ∅ Rn 0110nnnnmmmm0001 —

MOV.L @Rm,Rn (Rm) ∅ Rn 0110nnnnmmmm0010 —

MOV.B Rm,@–Rn Rn – 1 ∅ Rn, Rm ∅ (Rn) 0010nnnnmmmm0100 —

MOV.W Rm,@–Rn Rn – 2 ∅ Rn, Rm ∅ (Rn) 0010nnnnmmmm0101 —

MOV.L Rm,@–Rn Rn – 4 ∅ Rn, Rm ∅ (Rn) 0010nnnnmmmm0110 —

MOV.B @Rm+,Rn (Rm) ∅ sign extension ∅ Rn,
Rm + 1 ∅ Rm

0110nnnnmmmm0100 —

MOV.W @Rm+,Rn (Rm) ∅ sign extension ∅ Rn,
Rm + 2 ∅ Rm

0110nnnnmmmm0101 —

MOV.L @Rm+,Rn (Rm) ∅ Rn, Rm + 4 ∅ Rm 0110nnnnmmmm0110 —

MOV.B Rm,@(R0,Rn) Rm ∅ (R0 + Rn) 0000nnnnmmmm0100 —

MOV.W Rm,@(R0,Rn) Rm ∅ (R0 + Rn) 0000nnnnmmmm0101 —

MOV.L Rm,@(R0,Rn) Rm ∅ (R0 + Rn) 0000nnnnmmmm0110 —

MOV.B @(R0,Rm),Rn (R0 + Rm) ∅ sign extension ∅
Rn

0000nnnnmmmm1100 —

MOV.W @(R0,Rm),Rn (R0 + Rm) ∅ sign extension ∅
Rn

0000nnnnmmmm1101 —

MOV.L @(R0,Rm),Rn (R0 + Rm) ∅ Rn 0000nnnnmmmm1110 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

Operation:

MOV(int m,int n) /* MOV Rm,Rn  */

{

R[n]=R[m];

PC+=2;

}
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MOVBS(int m,int n) /* MOV.B Rm,@Rn  */
{

Write_Byte(R[n],R[m]);
PC+=2;

}
MOVWS(int m,int n) /* MOV.W Rm,@Rn  */
{

Write_Word(R[n],R[m]);
PC+=2;

}
MOVLS(int m,int n) /* MOV.L Rm,@Rn  */
{

Write_Long(R[n],R[m]);
PC+=2;

}
MOVBL(int m,int n) /* MOV.B @Rm,Rn  */
{

R[n]=(int)Read_Byte(R[m]);
if ((R[n]&0x80)==0)

R[n]&=0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;

}
MOVWL(int m,int n) /* MOV.W @Rm,Rn  */
{

R[n]=(int)Read_Word(R[m]);
if ((R[n]&0x8000)==0)

R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}
MOVLL(int m,int n) /* MOV.L @Rm,Rn  */
{

R[n]=Read_Long(R[m]);
PC+=2;

}
MOVBM(int m,int n) /* MOV.B Rm,@–Rn  */
{

Write_Byte(R[n]–1,R[m]);
R[n]–=1;
PC+=2;

}
MOVWM(int m,int n) /* MOV.W Rm,@–Rn  */
{

Write_Word(R[n]–2,R[m]);
R[n]–=2;
PC+=2;

}
MOVLM(int m,int n) /* MOV.L Rm,@–Rn  */
{

Write_Long(R[n]–4,R[m]);
R[n]–=4;
PC+=2;

}
MOVBP(int m,int n) /* MOV.B @Rm+,Rn  */
{

R[n]=(int)Read_Byte(R[m]);
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if ((R[n]&0x80)==0)
R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;
if (n!=m) R[m]+=1;
PC+=2;

}
MOVWP(int m,int n) /* MOV.W @Rm+,Rn  */
{

R[n]=(int)Read_Word(R[m]);
if ((R[n]&0x8000)==0)

R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
if (n!=m) R[m]+=2;
PC+=2;

}
MOVLP(int m,int n) /* MOV.L @Rm+,Rn  */
{

R[n]=Read_Long(R[m]);
if (n!=m) R[m]+=4;
PC+=2;

}
MOVBS0(int m,int n) /* MOV.B Rm,@(R0,Rn)  */
{

Write_Byte(R[n]+R[0],R[m]);
PC+=2;

}
MOVWS0(int m,int n) /* MOV.W Rm,@(R0,Rn)  */
{

Write_Word(R[n]+R[0],R[m]);
PC+=2;

}
MOVLS0(int m,int n) /* MOV.L Rm,@(R0,Rn)  */
{

Write_Long(R[n]+R[0],R[m]);
PC+=2;

}
MOVBL0(int m,int n) /* MOV.B @(R0,Rm),Rn  */
{

R[n]=(int)Read_Byte(R[m]+R[0]);
if ((R[n]&0x80)==0)

R[n]&=0x000000FF;
else R[n]|=0xFFFFFF00;
PC+=2;

}
MOVWL0(int m,int n) /* MOV.W @(R0,Rm),Rn  */
{

R[n]=(int)Read_Word(R[m]+R[0]);
if ((R[n]&0x8000)==0)

R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
PC+=2;

}
MOVLL0(int m,int n) /* MOV.L @(R0,Rm),Rn  */
{

R[n]=Read_Long(R[m]+R[0]);
PC+=2;

}
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Examples:

MOV R0,R1 Before execution R0 = H'FFFFFFFF, R1 = H'00000000

After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 Before execution R0 = H'FFFF7F80

After execution (R1) = H'7F80

MOV.B @R0,R1 Before execution (R0) = H'80, R1 = H'00000000

After execution R1 = H'FFFFFF80

MOV.W R0,@–R1 Before execution R0 = H'AAAAAAAA, R1 = H'FFFF7F80

After execution R1 = H'FFFF7F7E, (R1) = H'AAAA

MOV.L @R0+,R1 Before execution R0 = H'12345670

After execution R0 = H'12345674, R1 = (H'12345670)

MOV.B R1,@(R0,R2) Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = (H'10000004)

MOV.W @(R0,R2),R1 Before execution R2 = H'00000004, R0 = H'10000000

After execution R1 = (H'10000004)
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MOV (Move Constant Value): Data Transfer Instruction

Format Abstract Code T Bit

MOV #imm,Rn #imm ∅ sign extension ∅ Rn 1110nnnniiiiiiii —

MOV.W @(disp,PC),Rn (disp + PC + 4) ∅ sign
extension ∅ Rn

1001nnnndddddddd —

MOV.L @(disp,PC),Rn (disp + PC + 4) ∅ Rn 1101nnnndddddddd —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, the data are loaded from a memory location at the address (PC
+ 4 + displacement). If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the range is up to PC + 4 + 510 bytes. The PC value is an instruction address of
the MOV instruction. If the data is a longword, the 8-bit displacement is zero-extended and
quadrupled. Consequently, the range is up to PC + 4 + 1020 bytes, but the lowest two bits of the
PC are corrected to B'00.

Note: When the PC-relative load instructions are executed in a delay slot, the slot illegal
instruction exception may be caused.

Operation:

MOVI(int i,int n) /* MOV #imm,Rn  */

{

if ((i&0x80)==0)

R[n]=(0x000000FF & i);

else R[n]=(0xFFFFFF00 | i);

PC+=2;

}
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MOVWI(int d,int n) /* MOV.W @(disp,PC),Rn  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

R[n]=(int)Read_Word(PC+4+(disp*2));

if ((R[n]&0x8000)==0)

R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(int d,int n) /* MOV.L @(disp,PC),Rn  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & (int)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+4+(disp*4));

PC+=2;

}

Examples:

Address

1000 MOV #H'80,R1 R1 = H'FFFFFF80

1002 MOV.W IMM,R2 R2 = H'FFFF9ABC, IMM means (PC + 4 + H'08)

1004 ADD #–1,R0

1006 TST R0,R0

1008 MOV.L @(3,PC),R3 R3 = H'12345678

100A BRA NEXT Delayed branch instruction

100C NOP

100E IMM.data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3Branch destination of the BRA instruction

1014 CMP/EQ #0,R0

.align 4

1018 .data.l H'12345678

101C .data.l H'9ABCDEF0
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MOV (Move Global Data): Data Transfer Instruction

Format Abstract Code T Bit

MOV.B @(disp,GBR),R0 (disp + GBR) ∅ sign extension ∅ R0 11000100dddddddd —

MOV.W @(disp,GBR),R0 (disp + GBR) ∅ sign extension ∅ R0 11000101dddddddd —

MOV.L @(disp,GBR),R0 (disp + GBR) ∅ R0 11000110dddddddd —

MOV.B R0,@(disp,GBR) R0 ∅ (disp + GBR) 11000000dddddddd —

MOV.W R0,@(disp,GBR) R0 ∅ (disp + GBR) 11000001dddddddd —

MOV.L R0,@(disp,GBR) R0 ∅ (disp + GBR) 11000010dddddddd —

Description: Transfers the source operand to the destination. The data can be a byte, word, or
longword, but only R0 register is available as the target register.

When the target data is a byte, the only change made is to zero-extend the 8-bit displacement.
Consequently, an address within +255 bytes can be specified. When the target data is a word, the
8-bit displacement is zero-extended and doubled. Consequently, an address within +510 bytes
can be specified. When the target data is a longword, the 8-bit displacement is zero-extended
and is quadrupled. Consequently, an address within +1020 bytes can be specified. When the
source operand is in memory, the loaded data is stored in the register after it is sign-extended to
a longword.

Note: The destination register of a data load is always R0.

Operation:

MOVBLG(int d) /* MOV.B @(disp,GBR),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

R[0]=(int)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0)

R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}
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MOVWLG(int d) /* MOV.W @(disp,GBR),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

R[0]=(int)Read_Word(GBR+(disp*2));

if ((R[0]&0x8000)==0)

R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(int d) /* MOV.L @(disp,GBR),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

R[0]=Read_Long(GBR+(disp*4));

PC+=2;

}

MOVBSG(int d) /* MOV.B R0,@(disp,GBR)  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(int d) /* MOV.W R0,@(disp,GBR)  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

Write_Word(GBR+(disp*2),R[0]);

PC+=2;

}
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MOVLSG(int d) /* MOV.L R0,@(disp,GBR)  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

Write_Long(GBR+(disp*4),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 Before execution (GBR + 8) = H'12345670

After execution R0 = (H'12345670)

MOV.B R0,@(1,GBR) Before execution R0 = H'FFFF7F80

After execution (GBR + 1) = H'FFFF7F80
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MOV (Move Displacement Addressing): Data Transfer Instruction

Format Abstract Code T Bit

MOV.B R0,@(disp,Rn) R0 ∅ (disp + Rn) 10000000nnnndddd —

MOV.W R0,@(disp,Rn) R0 ∅ (disp + Rn) 10000001nnnndddd —

MOV.L Rm,@(disp,Rn) Rm ∅ (disp + Rn) 0001nnnnmmmmdddd —

MOV.B @(disp,Rm),R0 (disp + Rm) ∅ sign
extension ∅ R0

10000100mmmmdddd —

MOV.W @(disp,Rm),R0 (disp + Rm) ∅ sign
extension ∅ R0

10000101mmmmdddd —

MOV.L @(disp,Rm),Rn (disp + Rm) ∅ Rn 0101nnnnmmmmdddd —

Description: Transfers the source operand to the destination. The data can be a byte, word, or
longword, but when a byte or word is selected, only the R0 register can be used. When the data
is a byte, the only change made is to zero-extend the 4-bit displacement. Consequently, an
address within +15 bytes can be specified. When the data is a word, the 4-bit displacement is
zero-extended and doubled. Consequently, an address within +30 bytes can be specified. When
the data is a longword, the 4-bit displacement is zero-extended and quadrupled. Consequently,
an address within +60 bytes can be specified. If the displacement is too short to reach the
memory operand, the aforementioned @(R0,Rn) mode must be used. When the source operand
is in memory, the loaded data is stored in the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0.

Operation:

MOVBS4(int d,int n) /* MOV.B R0,@(disp,Rn)  */

{

unsigned int disp;

disp=(unsined int)(0x0000000F & d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}
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MOVWS4(int d,int n) /* MOV.W R0,@(disp,Rn)  */

{

unsigned int disp;

disp=(unsigned int)(0x0000000F & d);

Write_Word(R[n]+(disp*2),R[0]);

PC+=2;

}

MOVLS4(int m,int d,int n)  /* MOV.L Rm,@(disp,Rn)  */

{

unsigned int disp;

disp=(unsigned int)(0x0000000F & d);

Write_Long(R[n]+(disp*4),R[m]);

PC+=2;

}

MOVBL4(int m,int d) /* MOV.B @(disp,Rm),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x0000000F & d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0)

R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}
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MOVWL4(int m,int d) /* MOV.W @(disp,Rm),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x0000000F & d);

R[0]=Read_Word(R[m]+(disp*2));

if ((R[0]&0x8000)==0)

R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(int m,int d,int n) /* MOV.L @(disp,Rm),Rn  */

{

unsigned int disp;

disp=(unsigned int)(0x0000000F & d);

R[n]=Read_Long(R[m]+(disp*4));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 Before execution (R0 + 8) = H'12345670

After execution R1 = (H'12345670)

MOV.L R0,@(H'F,R1) Before execution R0 = H'FFFF7F80

After execution (R1 + 60) = H'FFFF7F80
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MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code T Bit

MOVA @(disp,PC),R0 disp + PC + 4 ∅ R0 11000111dddddddd —

Description: Stores the effective address of the source operand into general register R0. The 8-
bit displacement is zero-extended and quadrupled. The PC value is an instruction address of the
MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: When MOVA is executed in a delay slot, the slot illegal instruction exception may be
caused.

Operation:

MOVA(int d) /* MOVA @(disp,PC),R0  */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);

R[0]=(PC&0xFFFFFFFC)+4+(disp*4);

PC+=2;

}

Examples:

Address.org H'1006

1006 MOVA STR,R0Address of STR ∅ R0

1008 MOV.B @R0,R1R1 = “X” ♦ PC location after correcting the lowest two bits

100A ADD R4,R5 ♦ Original PC location for address calculation for the MOVA
instruction

.align 4

100C STR: .sdata “XYZP12”
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MOVCA.L (Move with Cache Block Allocation): Data Transfer Instruction

Format Operation Instruction Code T Bit

MOVCA.L  R0,@Rn R0 ∅ (Rn) 0000nnnn11000011 —

Description

This instruction stores the longword in R0 into memory, using the contents of general register
Rn as the effective address. The operation of this instruction differs from that of other store
instructions in the following case.

When the memory location to be accessed has a write-back attribute, and a cache miss occurs,
the corresponding cache block is reserved, a block read from external memory is not performed,
and the longword in R0 is written to that cache location. The contents of other locations in the
cache block are undefined.

Operation

     MOVCAL(int n)      /*MOVCA.L  R0,@Rn */

     {

       if ((is_write_back_memory(R[n]))

            && (look_up_in_operand_cache(R[n]) == MISS))

                      allocate_operand_cache_block(R[n]);

       Write_Long(R[n], R[0]);

       PC+=2;

    }

Exceptions

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

Exceptions are examined taking a data access by means of this instruction as a longword store.
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MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code T Bit

MOVT Rn T ∅ Rn 0000nnnn00101001 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(int n) /* MOVT Rn  */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Examples:

XOR R2,R2 R2 = 0

CMP/PZ R2 T = 1

MOVT R0 R0 = 1

CLRT T = 0

MOVT R1 R1 = 0
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MUL.L (Multiply Long): Arithmetic Instruction

Format Abstract Code T Bit

MUL.L Rm,Rn Rn ∞ Rm ∅ MACL 0000nnnnmmmm0111 —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register is not changed.

Operation:

MULL(int m,int n) /* MUL.L Rm,Rn  */

{

MACL=(int)R[n]*(int)R[m];

PC+=2;

}

Examples:

MULL R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result
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MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn ∞ Rm ∅ MACL 0010nnnnmmmm1111 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register is
not changed.

Operation:

MULS(int m,int n) /* MULS Rm,Rn  */

{

MACL=((int)(short)R[n]*(int)(short)R[m]);

PC+=2;

}

Examples:

MULS R0,R1 Before execution R0 = H'FFFFFFFE, R1 = H'00005555

After execution MACL = H'FFFF5556

STS MACL,R0 Operation result
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MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn ∞ Rm ∅ MACL 0010nnnnmmmm1110 —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(int m,int n) /* MULU Rm,Rn  */

{

MACL=((unsigned int)(unsigned short)R[n]

*(unsigned int)(unsigned short)R[m]);

PC+=2;

}

Examples:

MULU R0,R1 Before execution R0 = H'00000002, R1 = H'FFFFAAAA

After execution MACL = H'00015554

STS MACL,R0 Operation result
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NEG (Negate): Arithmetic Instruction

Format Abstract Code T Bit

NEG Rm,Rn 0 – Rm ∅ Rn 0110nnnnmmmm1011 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(int m,int n) /* NEG Rm,Rn  */

{

R[n]=0-R[m];

PC+=2;

}

Examples:

NEG R0,R1 Before execution R0 = H'00000001

After execution R1 = H'FFFFFFFF
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NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code T Bit

NEGC Rm,Rn 0 – Rm – T ∅ Rn, Borrow ∅ T 0110nnnnmmmm1010 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the
sign of a value that has more than 32 bits.

Operation:

NEGC(int m,int n) /* NEGC Rm,Rn  */

{

unsigned int temp;

temp=0-R[m];

R[n]=temp-T;

if(0 < (int)temp) T=1;

else T=0;

if((int)temp < R[n]) T=1;

PC+=2;

}

Examples:

CLRT Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 Before execution R1 = H'00000001, T = 0

After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 Before execution R0 = H'00000000, T = 1

After execution R0 = H'FFFFFFFF, T = 1
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NOP (No Operation): System Control Instruction

Format Abstract Code T Bit

NOP No operation 0000000000001001 —

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Examples:

NOP Executes in one cycle
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NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code T Bit

NOT Rm,Rn ~Rm ∅ Rn 0110nnnnmmmm0111 —

Description: Takes the one’s complement of general register Rm data, and stores the result in
Rn. This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(int m,int n) /* NOT Rm,Rn */

{

R[n]=˜R[m];

PC+=2;

}

Examples:

NOT R0,R1 Before execution R0 = H'AAAAAAAA

After execution R1 = H'55555555



283

OCBI (Operand Cache Block Invalidate): Data Transfer Instruction

Format Operation Instruction Code T Bit

OCBI  @Rn invalidate operand cache block 0000nnnn10010011 —

Description

This instruction accesses data using the contents of general register Rn as the effective address.
In the event of a cache hit, the corresponding cache block is invalidated (V bit = 0). In this case,
the cache block is not written back to external memory even if it is dirty (U bit = 1). In the event
of a cache miss, or if the memory location to be accessed is non-cacheable, the data access
results in no operation.

Operation

OCBI(int n)        /* OCBI @Rn */

{

  invalidate_operand_cache_block(R[n]);

  PC+=2;

}

Exceptions

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

TLB miss, data TLB protection violation, and initial page write exceptions are not suppressed
even if an OCBI data access results in no operation.

Exceptions are examined taking a data access by means of this instruction as a byte store.
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OCBP (Operand Cache Block Purge): Data Transfer Instruction

Format Operation Instruction Code T Bit

OCBP  @Rn purge operand cache block 0000nnnn10100011 —

Description

This instruction accesses data using the contents of general register Rn as the effective address.
If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents of that
cache block are written back to external memory, and then the cache block is invalidated (V bit
= 0). If there is a cache hit and the corresponding cache block is clean (U bit = 0), the cache
block is simply invalidated (V bit = 0). In the event of a cache miss, or if the memory location to
be accessed is non-cacheable, the data access results in no operation.

Operation

OCBP(int n)        /* OCBP @Rn */

{

  if(is_dirty_block(R[n]))  write_back(R[n])

  invalidate_operand_cache_block(R[n]);

  PC+=2;

}

Exceptions

• Data TLB miss exception

• Data TLB protection violation exception

• Address error

TLB miss, data TLB protection violation, and address error exceptions are not suppressed even
if an OCBP data access results in no operation.

Exceptions are examined taking a data access by means of this instruction as a byte load.
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OCBWB (Operand Cache Block Write Back): Data Transfer Instruction

Format Operation Instruction Code T Bit

OCBWB  @Rn Write back operand cache block 0000nnnn10110011 —

Description

This instruction accesses data using the contents of general register Rn as the effective address.
If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents of that
cache block are written back to external memory, and the cache block becomes clean (U bit =
0). In other cases—that is, in the event of a cache miss, or a cache hit when the cache block is
clean (U bit = 0), or an access to a non-cacheable area—the data access results in no operation.

Operation

     OCBWB(int n)       /* OCBWB @Rn */

     {

       if(is_dirty_block(R[n]))  write_back(R[n]);

       PC+=2;

     }

Exceptions

• Data TLB miss exception

• Data TLB protection violation exception

• Address error

TLB miss, data TLB protection violation, and address error exceptions are not suppressed even
if an OCBWB data access results in no operation.

Exceptions are examined taking a data access by means of this instruction as a byte load.
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OR (OR Logical) Logic Operation Instruction

Format Abstract Code T Bit

OR Rm,Rn Rn | Rm ∅ Rn 0010nnnnmmmm1011 —

OR #imm,R0 R0 | imm ∅ R0 11001011iiiiiiii —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm ∅ (R0 + GBR) 11001111iiiiiiii —

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using GBR-based index addressing can be ORed with 8-
bit immediate data.

Operation:

OR(int m,int n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(int i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & i);

PC+=2;

}

ORM(int i) /* OR.B #imm,@(R0,GBR) */

{

int temp;

temp=(int)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}
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Examples:

OR R0,R1 Before execution R0 = H'AAAA5555, R1 = H'55550000

After execution R1 = H'FFFF5555

OR #H'F0,R0 Before execution R0 = H'00000008

After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'F5
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PREF (Prefetch Data to Cache)

Format Abstract Code T Bit

PREF @Rn prefetch cache lock 0000nnnn10000011 —

Description: loads a 32-byte data block, which begins at a 32-byte boundary, to Operand Cache.
Lowest 5 bits of the address specified with Rn are masked to zero.

No address related error is detected in this instruction. In case of an error, the instruction
operates as NOP.

Operation:

PREF(int n)  /* PREF */

{

prefetch_data_block(R[n]&H'FFFFFFE0);

PC+=2;

}

Examples:

MOV.L SOFT_PF,R1 Address of R1 is SOFT_PF

PREF @R1 Load data from SOFT_PF to on-chip cache

.align 32

SOFT_PF: .data.l H'12345678

.data.l H'9ABCDEF0

.data.l H'AAAA5555

.data.l H'5555AAAA

.data.l H'11111111

.data.l H'22222222

.data.l H'33333333

.data.l H'44444444
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ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code T Bit

ROTCL Rn T ♦ Rn ♦ T 0100nnnn00100100 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.3).

Figure 10.3   Rotate with Carry Left

Operation:

ROTCL(int n) /* ROTCL Rn */

{

int temp;

if ((R[n]&0x80000000)==0)

temp=0;

else temp=1;

R[n]<<=1;

if(T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

T=temp;

PC+=2;

}

Examples:

ROTCL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000000, T = 1
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ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code T Bit

ROTCR Rn T ∅ Rn ∅ T 0100nnnn00100101 LSB

Description: Rotates the contents of general register Rn and the T bit to the  right by one bit,
and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.4).

Figure 10.4   Rotate with Carry Right

Operation:

ROTCR(int n) /* ROTCR Rn */

{

int temp;

if((R[n]&0x00000001)==0)

temp=0;

else temp=1;

R[n]>>=1;

if(T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

T=temp;

PC+=2;

}

Examples:

ROTCR R0 Before execution R0 = H'00000001, T = 1

After execution R0 = H'80000000, T = 1
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ROTL (Rotate Left): Shift Instruction

Format Abstract Code T Bit

ROTL Rn T ♦ Rn ♦ MSB 0100nnnn00000100 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the
result in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

Figure 10.5   Rotate Left

Operation:

ROTL(int n) /* ROTL Rn  */

{

if((R[n]&0x80000000)==0)

T=0;

else T=1;

R[n]<<=1;

if(T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 Before execution R0 = H'80000000, T = 0

After execution R0 = H'00000001, T = 1
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ROTR (Rotate Right): Shift Instruction

Format Abstract Code T Bit

ROTR Rn LSB ∅ Rn ∅ T 0100nnnn00000101 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

Figure 10.6   Rotate Right

Operation:

ROTR(int n) /* ROTR Rn  */

{

if ((R[n]&0x00000001)==0)

T=0;

else T=1;

R[n]>>=1;

if(T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 Before execution R0 = H'00000001, T = 0

After execution R0 = H'80000000, T = 1
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RTE (Return from Exception): System Control Instruction (Privileged Only)

Class: Delayed branch instruction

Format Abstract Code T Bit

RTE SSR ∅ SR, SPC ∅ PC 0000000000101011 —

Description: Returns from an exception routine. The PC and SR values are loaded from SPC
and SSR. The program continues from the address specified by the loaded PC value. RTE is a
privileged instruction and can be used in privileged mode only. If used in user mode, it causes an
illegal instruction exception.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before
branching. No interrupts are accepted between this instruction and the next instruction. An
instruction in delay slot of RTE should not cause any exception. If the next instruction is a
branch instruction, it is acknowledged as an illegal slot instruction. The content of SR accessed
by an instruction in the delay slot of an RTE is a value which is restored from the SSR by the
RTE. The SR.MD value, which had been defined before the RTE execution, is however used to
fetch a instruction in delay slot of the RTE.

Operation:

RTE() /* RTE  */

{

SR=SSR;

Delay_Slot(PC+2);

PC=SPC;

}

Examples:

RTE Returns to the original routine

ADD #8,R15 Executes ADD before branching
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RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code T Bit

RTS PR ∅ PC 0000000000001011 —

Description: Returns from a subroutine. The PC values are restored from the PR, and the
program continues from the address specified by the restored PC value. This instruction is used
to return from a subroutine called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the
next instruction is a branch instruction, it is acknowledged as an illegal slot instruction. An
instruction restoring the PR should be prior to an RTS instruction. That restoring instruction
should not be the delay slot of the RTS.

Operation:

RTS() /* RTS  */

{

Delay_Slot(PC+2);

PC=PR;

}

Examples:

MOV.L TABLE,R3 R3 = Address of TRGET

JSR @R3Branches to TRGET

NOP Executes NOP before branching

ADD R0,R1 ♦ Return address for when the subroutine procedure is completed (PR data)

   .............

TABLE: .data.l TRGET Jump table

   .............

TRGET: MOV R1,R0 ♦ Procedure entrance

RTS PR data ∅ PC

MOV #12,R0 Executes MOV before branching
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SETS (Set S Bit): System Control Instruction

Format Abstract Code T Bit

SETS 1 ∅ S 0000000001011000 —

Description: Sets the S bit to 1.

Operation:

SETT() /* SETS */

{

S=1;

PC+=2;

}

Examples:

SETS Before execution S = 0

After execution S = 1
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SETT (Set T Bit): System Control Instruction

Format Abstract Code T Bit

SETT 1 ∅ T 0000000000011000 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT  */

{

T=1;

PC+=2;

}

Examples:

SETT Before execution T = 0

After execution T = 1
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SHAD (Shift Arithmetic Dynamically): Shift Instruction

Format Abstract Code T Bit

SHAD Rm,Rn Rn << Rm ∅ Rn (Rm _ 0)

Rn >> Rm ∅ Rn (Rm < 0)

0100nnnnmmmm1100 —

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and shift count (figure 6.7).

• Shift direction: Rm _ 0, left
Rm < 0, right

• Shift count: Rm (4–0) are used; if negative, two’s complement is set to Rm.
The maximum magnitude of the left shift count is 31 (0–31).
The maximum magnitude of the right shift count is 32 (1–32).

Rm ³ 0

MSB

MSB

LSB

Rm ³ 0

MSB LSB

0

Figure 10.7   Shift Arithmetic Dynamically
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Operation:

SHAD(int m,n) /* SHAD Rm,Rn  */

{

int sgn;

sgn = R[m] & 0x80000000;

if (sgn == 0)

R[n] <<= (R[m] & 0x1F);

else if ((R[m] & 0x1F) == 0) {

if ((R[n] & 0x80000000) == 0)

R[n] = 0;

else

R[n] = 0xFFFFFFFF;

}

else

R[n]=(long)R[n] >> ((~R[m] & 0x1F) + 1);

PC+=2;

}

Examples:

SHAD R1,R2 Before execution R1 = H'FFFFFFEC, R2 = H'80180000

After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801
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SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code T Bit

SHAL Rn T ♦ Rn ♦ 0 0100nnnn00100000 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.8).

Figure 10.8   Shift Arithmetic Left

Operation:

SHAL(int n) /* SHAL Rn (Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHAL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1
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SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code T Bit

SHAR Rn MSB ∅ Rn ∅ T 0100nnnn00100001 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure
6.9).

Figure 10.9   Shift Arithmetic Right

Operation:

SHAR(int n) /* SHAR Rn  */

{

int temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHAR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'C0000000, T = 1
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SHLD (Shift Logical Dynamically): Shift Instruction

Format Abstract Code T Bit

SHLD Rm,Rn Rn << Rm ∅ Rn (Rm _ 0)

Rn >> Rm ∅ Rn (Rm < 0)

0100nnnnmmmm1101 —

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and shift count (figure 6.10). T bit is the last shifted bit of Rn.

• Shift direction: Rm _ 0, left
Rm < 0, right

• Shift count: Rm (4–0) are used; if negative, two’s complement is set to Rm.
The maximum magnitude of the left shift count is 31 (0–31).
The maximum magnitude of the right shift count is 32 (1–32).

0

MSB LSB

Rm ≥
 0

0

MSB LSB

Rm < 0

Figure 10.10   Shift Logical Dynamically
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Operation:

SHLD(int m,n) /* SHLD Rm,Rn  */

{

int sgn;

sgn = R[m] & 0x80000000;

if (sgn == 0)

R[n]<<=(R[m] & 0x1F);

else if ((R[m] & 0x1F) == 0)

R[n] = 0;

else

R[n] = (unsigned)R[n] >> ((~R[m] & 0x1F) + 1);

PC+=2;

}

Examples:

SHLD R1,R2 Before execution R1 = H'FFFFFFEC, R2 = H'80180000

After execution R1 = H'FFFFFFEC, R2 = H'00000801
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SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code T Bit

SHLL Rn T ♦ Rn ♦ 0 0100nnnn00000000 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

Figure 10.11   Shift Logical Left

Operation:

SHLL(int n) /* SHLL Rn (Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'00000002, T = 1



304

SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code T Bit

SHLL2 Rn Rn << 2 ∅ Rn 0100nnnn00001000 —

SHLL8 Rn Rn << 8 ∅ Rn 0100nnnn00011000 —

SHLL16 Rn Rn << 16 ∅ Rn 0100nnnn00101000 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.12).

SHLL8

MSB LSB

SHLL16

0

MSB LSB

0

SHLR2

MSB LSB

0

Figure 10.12   Shift Logical Left n Bits
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Operation:

SHLL2(int n) /* SHLL2 Rn  */

{

R[n]<<=2;

PC+=2;

}

SHLL8(int n) /* SHLL8 Rn  */

{

R[n]<<=8;

PC+=2;

}

SHLL16(int n) /* SHLL16 Rn  */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R0 Before execution R0 = H'12345678

After execution R0 = H'48D159E0

SHLL8 R0 Before execution R0 = H'12345678

After execution R0 = H'34567800

SHLL16 R0 Before execution R0 = H'12345678

After execution R0 = H'56780000
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SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code T Bit

SHLR Rn 0 ∅ Rn ∅ T 0100nnnn00000001 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 6.13).

Figure 10.13   Shift Logical Right

Operation:

SHLR(int n) /* SHLR Rn  */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHLR R0 Before execution R0 = H'80000001, T = 0

After execution R0 = H'40000000, T = 1
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SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code T Bit

SHLR2 Rn Rn>>2 ∅ Rn 0100nnnn00001001 —

SHLR8 Rn Rn>>8 ∅ Rn 0100nnnn00011001 —

SHLR16 Rn Rn>>16 ∅ Rn 0100nnnn00101001 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.14).

SHLR8

MSB LSB

SHLR16

0

MSB LSB

0

SHLR2

MSB LSB

0

Figure 10.14   Shift Logical Right n Bits
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Operation:

SHLR2(int n) /* SHLR2 Rn  */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}

SHLR8(int n) /* SHLR8 Rn  */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(int n) /* SHLR16 Rn  */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 Before execution R0 = H'12345678

After execution R0 = H'048D159E

SHLR8 R0 Before execution R0 = H'12345678

After execution R0 = H'00123456

SHLR16 R0 Before execution R0 = H'12345678

After execution R0 = H'00001234
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SLEEP (Sleep): System Control Instruction (Privileged Only)

Format Abstract Code T Bit

SLEEP Sleep 0000000000011011 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module status is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

SLEEP is a privileged instruction and can be used in privileged mode only. If used in user mode,
it causes an illegal instruction exception.

Note: The performance of SLEEP depends on STBCR(Standby Control Register) , see Section 9
“Power-Down Modes”, SH-4 Hardware Manual.

Operation:

SLEEP() /* SLEEP  */

{

sleep_standby();

}

Examples:

SLEEP Enters power-down mode
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STC (Store Control Register): System Control Instruction

Format Operation Instruction Code T Bit

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC SSR,Rn

STC SPC,Rn

STC SGR,Rn

STC DBR,Rn

STC R0_BANK,Rn

STC R1_BANK,Rn

STC R2_BANK,Rn

STC R3_BANK,Rn

STC R4_BANK,Rn

STC R5_BANK,Rn

STC R6_BANK,Rn

STC R7_BANK,Rn

STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

STC.L SSR,@–Rn

STC.L SPC,@–Rn

STC.L SGR,@–Rn

STC.L DBR,@–Rn

STC.L R0_BANK,@–Rn

STC.L R1_BANK,@–Rn

STC.L R2_BANK,@–Rn

STC.L R3_BANK,@–Rn

STC.L R4_BANK,@–Rn

STC.L R5_BANK,@–Rn

STC.L R6_BANK,@–Rn

STC.L R7_BANK,@–Rn

SR ∅ Rn

GBR ∅ Rn

VBR ∅ Rn

SSR ∅ Rn

SPC ∅ Rn

SGR ∅ Rn

DBR ∅ Rn

R0_BANK ∅ Rn

R1_BANK ∅ Rn

R2_BANK ∅ Rn

R3_BANK ∅ Rn

R4_BANK ∅ Rn

R5_BANK ∅ Rn

R6_BANK ∅ Rn

R7_BANK ∅ Rn

Rn–4 ∅ Rn, SR ∅ (Rn)

Rn–4 ∅ Rn, GBR ∅ (Rn)

Rn–4 ∅ Rn, VBR ∅ (Rn)

Rn–4 ∅ Rn, SSR ∅ (Rn)

Rn–4 ∅ Rn, SPC ∅ (Rn)

Rn–4 ∅ Rn, SGR ∅ (Rn)

Rn–4 ∅ Rn, DBR ∅ (Rn)

Rn–4 ∅ Rn, R0_BANK ∅ (Rn)

Rn–4 ∅ Rn, R1_BANK ∅ (Rn)

Rn–4 ∅ Rn, R2_BANK ∅ (Rn)

Rn–4 ∅ Rn, R3_BANK ∅ (Rn)

Rn–4 ∅ Rn, R4_BANK ∅ (Rn)

Rn–4 ∅ Rn, R5_BANK ∅ (Rn)

Rn–4 ∅ Rn, R6_BANK ∅ (Rn)

Rn–4 ∅ Rn, R7_BANK ∅ (Rn)

0000nnnn00000010

0000nnnn00010010

0000nnnn00100010

0000nnnn00110010

0000nnnn01000010

0000nnnn00111010

0000nnnn11111010

0000nnnn10000010

0000nnnn10010010

0000nnnn10100010

0000nnnn10110010

0000nnnn11000010

0000nnnn11010010

0000nnnn11100010

0000nnnn11110010

0100nnnn00000011

0100nnnn00010011

0100nnnn00100011

0100nnnn00110011

0100nnnn01000011

0100nnnn00110010

0100nnnn11110010

0100nnnn10000011

0100nnnn10010011

0100nnnn10100011

0100nnnn10110011

0100nnnn11000011

0100nnnn11010011

0100nnnn11100011

0100nnnn11110011

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—
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Description

These instructions store the contents of control register SR, GBR, VBR, SSR, SPC, SGR, DBR,
or R0_BANK to R7_BANK into a destination register or memory. With the exception of STC
GBR,Rn and STC.L GBR,@–Rn, the STC and STC.L instructions are privileged instructions
and can only be used in privileged mode. Use in user mode will cause an illegal instruction
exception. STC GBR,Rn and STC.L GBR,@–Rn are non-privileged instructions.

With STC/STC.L instructions accessing Rn_BANK, Rn_BANK0 is accessed when the SR.RB
bit is 1, and Rn_BANK1 is accessed when this bit is 0.

Operation

     STCSR(int n)       /* STC SR,Rn : Privileged */

     {

       R[n]=SR;

       PC+=2;

     }

     STCGBR(int n)      /* STC GBR,Rn */

     {

       R[n]=GBR;

       PC+=2;

     }

     STCVBR(int n)      /* STC VBR,Rn : Privileged */

     {

       R[n]=VBR;

       PC+=2;

     }

     STCSSR(int n)      /* STC SSR,Rn : Privileged */

     {

       R[n]=SSR;

       PC+=2;

     }
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     STCSPC(int n)      /* STC SPC, Rn : Privileged */

     {

       R[n]=SPC;

       PC+=2;

     }

     STCSGR(int n)      /* STC SGR,Rn : Privileged */

     {

       R[n]=SGR;

       PC+=2;

     }

     STCDBR(int n)      /* STC DBR,Rn : Privileged */

     {

       R[n]=DBR;

       PC+=2;

     }

     STCRn_BANK(int m)  /* STC Rn_BANK,Rm : Privileged */

                         /* n=0-7 */

     {

       R[m]=Rn_BANK;

       PC+=2;

     }

     STCMSR(int n)      /* STC.L SR,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],SR);

       PC+=2;

     }

     STCMGBR(int n)     /* STC.L GBR,@-Rn */

     {

       R[n]-=4;

       Write_Long(R[n],GBR);

       PC+=2;
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     }

     STCMVBR(int n)     /* STC.L VBR,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],VBR);

       PC+=2;

     }

     STCMSSR(int n)     /* STC.L SSR,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],SSR);

       PC+=2;

     }

     STCMSPC(int n)     /* STC.L SPC,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],SPC);

       PC+=2;

     }

     STCMSGR(int n)     /* STC.L SGR,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],SGR);

       PC+=2;

     }

     STCMDBR(int n)     /* STC.L DBR,@-Rn : Privileged */

     {

       R[n]-=4;

       Write_Long(R[n],DBR);

       PC+=2;

     }
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     STCMRn_BANK(int m) /* STC.L Rn_BANK,@-Rm : Privileged */

                         /* n=0-7 */

     {

       R[m]-=4;

       Write_Long(R[m],Rn_BANK);

       PC+=2;

     }

Exceptions

General illegal instruction exception
Slot illegal instruction exception
Data TLB miss exception
Data TLB protection violation exception
Address error
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STS (Store from FPU System Register): System Control Instruction

No. Format Abstract Code T Bit

1 STS FPUL, Rn FPUL ∅ Rn 0000nnnn01011010 —

2 STS.L FPUL, @-Rn Rn − 4 ∅ Rn, FPUL ∅ (Rn) 0100nnnn01010010 —

3 STS FPSCR, Rn FPSCR-> Rn 0000nnnn01101010 —

4 STS.L FPSCR, @-Rn Rn − 4 ∅ Rn, FPSCR ∅ (Rn) 0100nnnn01100010 —

Description:

1. Copies the content of system register FPUL to general purpose register Rm.

2. Stores the content of system register FPUL in the memory location addressed by general
register Rn, decremented by 4. Upon completion, the decremented value becomes the value
of Rn.

3. Copies the content of system register FPSCR to general purpose register Rm.

4. Stores the content of system register FPSCR in the memory location addressed by general
register Rn, decremented by 4. Upon completion, the decremented value becomes the value
of Rn.
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Operation:

STS(int  n) /* STS FPUL,Rn  */

{

R[n]= FPUL;

PC+=2;

}

STS_SAVE(int  n) /* STS.L FPUL,@-Rn  */

{

R[n]-=4;

Write_Long(R[n],FPUL) ;

PC+=2;

}

STS(int  n) /* STS FPSCR,Rn  */

{

R[n]=FPSCR&0x003FFFFF;

PC+=2;

}

STS_RESTORE(int  n) /* STS.L FPSCR,@-Rn  */

{

R[n]-=4;

Write_Long(R[n],FPSCR&0x003FFFFF)

PC+=2;

}

Exceptions: Address Error.

Examples:

• STS

Example 1:

MOV.L #H'12ABCDEF, R12

LDS.L @R12, FPUL

STS FPUL, R13

; After executing the STS instruction:

; R13 = 12ABCDEF
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Example 2:

STS FPSCR, R2

; After executing the STS instruction:

; The current content of FPSCR is stored in register R2

• STS.L

Example 1:

MOV.L #H'0C700148, R7

STS.L FPUL, @-R7

;  Before executing the STS.L instruction:

;  R7 = 0C700148

;  After executing the STS.L instruction:

;  R7 = 0C700144, and the content of FPUL is saved at memory

; location 0C700144.

Example 2:

MOV.L #H'0C700154, R8

STS.L FPSCR, @-R8

; After executing the STS.L instruction:

; The content of FPSCR is saved at memory location 0C700150.
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STS (Store System Register): System Control Instruction

Format Abstract Code T Bit

STS MACH,Rn MACH ∅ Rn 0000nnnn00001010 —

STS MACL,Rn MACL ∅ Rn 0000nnnn00011010 —

STS PR,Rn PR ∅ Rn 0000nnnn00101010 —

STS.L MACH,@–Rn Rn – 4 ∅ Rn, MACH ∅ (Rn) 0100nnnn00000010 —

STS.L MACL,@–Rn Rn – 4 ∅ Rn, MACL ∅ (Rn) 0100nnnn00010010 —

STS.L PR,@–Rn Rn – 4 ∅ Rn, PR ∅ (Rn) 0100nnnn00100010 —

Description: Stores system registers MACH, MACL and PR data into a specified destination.

Operation:

STSMACH(int n) /* STS MACH,Rn  */

{

R[n]=MACH;

PC+=2;

}

STSMACL(int n) /* STS MACL,Rn  */

{

R[n]=MACL;

PC+=2;

}

STSPR(int n) /* STS PR,Rn  */

{

R[n]=PR;

PC+=2;

}

STSMMACH(int n) /* STS.L MACH,@–Rn  */

{

R[n]–=4;

Write_Long(R[n],MACH);

PC+=2;

}
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STSMMACL(int n) /* STS.L MACL,@–Rn  */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

STSMPR(int n) /* STS.L PR,@–Rn  */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

Examples:

STS MACH,R0Before execution R0 = H'FFFFFFFF, MACH = H'00000000

After execution R0 = H'00000000

STS.L PR,@–R15 Before execution R15 = H'10000004

After execution R15 = H'10000000, @R15 = PR
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SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code T Bit

SUB Rm,Rn Rn – Rm ∅ Rn 0011nnnnmmmm1000 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(int m,int n) /* SUB Rm,Rn  */

{

R[n]-=R[m];

PC+=2;

}

Examples:

SUB R0,R1 Before execution R0 = H'00000001, R1 = H'80000000

After execution R1 = H'7FFFFFFF
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SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code T Bit

SUBC Rm,Rn Rn – Rm– T ∅ Rn, Borrow ∅ T 0011nnnnmmmm1010 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(int m,int n) /* SUBC Rm,Rn  */

{

unsigned int tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 Before execution T = 0, R1 = H'00000000, R3 = H'00000001

After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 Before execution T = 1, R0 = H'00000000, R2 = H'00000000

After execution T = 1, R0 = H'FFFFFFFF
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SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

Format Abstract Code T Bit

SUBV Rm,Rn Rn – Rm ∅ Rn, Underflow ∅ T 0011nnnnmmmm1011 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(int m,int n) /* SUBV Rm,Rn  */

{

int dest,src,ans;

if ((int)R[n]>=0) dest=0;

else dest=1;

if ((int)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((int)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 Before execution R0 = H'00000002, R1 = H'80000001

After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

After execution R3 = H'80000000, T = 1
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SWAP (Swap): Data Transfer Instruction

Format Abstract Code T Bit

SWAP.BRm,Rn Rm ∅ Swap upper and lower
halves of lower 2 bytes ∅ Rn

0110nnnnmmmm1000 —

SWAP.W
Rm,Rn

Rm ∅ Swap upper and lower
word ∅ Rn

0110nnnnmmmm1001 —

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16
bits of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm
are swapped for bits 16 to 31.

Operation:

SWAPB(int m,int n) /* SWAP.B Rm,Rn  */

{

unsigned int temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]&0x0000ff00)>>8;

R[n]=temp0|temp1|R[n];

PC+=2;

}

SWAPW(int m,int n) /* SWAP.W Rm,Rn  */

{

unsigned int temp;

R[n]=(R[m]<<16)|((R[m]>>16)&0x0000FFFF);

PC+=2;

}

Examples:

SWAP.B R0,R1 Before execution R0 = H'12345678

After execution R1 = H'12347856

SWAP.W R0,R1 Before execution R0 = H'12345678

After execution R1 = H'56781234
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TAS (Test and Set): Logic Operation Instructions

Format Operation Instruction Code T Bit

TAS.B  @Rn If (Rn) is 0,then 1 ∅ T else 0 ∅ T;

1 ∅ MSB of (Rn).

0100nnnn00011011 Test
Result

Description

To the memory area indicated by the contents of general register Rn, this instruction purges the
corresponding cache block, reads the byte data, and if the data is 0 then Tbit = 1, else Tbit = 0.
And set 1 to the bit 7 of the data and write to the same address. Between these operations, the
bus is not released. In this case, the purge operation is executed like the following.

Purge operation accesses data using the contents of general register Rn as the effective address.
If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents of that
cache block are written back to external memory, and then the cache block is invalidated (V bit
= 0). If there is a cache hit and the corresponding cache block is clean (U bit = 0), the cache
block is simply invalidated (V bit = 0). In the event of a cache miss, or if the memory location to
be accessed is non-cacheable, the purge results in no operation.

The two memory accesses of TAS.B are executed atomically. Any other memory access is not
performed between the two access of TAS.B.

Operation

TAS(int n)        /* TAS.B @Rn */

{

  int temp;

  temp=(int)Read_Byte(R[n]); /* Bus Lock */

  if(temp==0) T=1;

  else T=0;

  temp|=0x00000080;

  Write_Byte(R[n],temp);      /* Bus Unlock */

  PC+=2;

}

Exceptions

• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

Exceptions are examined taking a data access by means of this instruction as a byte store.
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TRAPA (Trap Always): System Control Instruction

Format Abstract Code T Bit

TRAPA #imm imm ∅ TRA,

PC + 2 ∅ SPC,

SR ∅ SSR,

1 ∅ SR.MD/BL/RB

0x160 ∅ EXPEVT

VBR + H'00000100 ∅ PC

11000011iiiiiiii —

Description: Starts the trap exception processing. The (PC + 2) and SR values are saved in SPC
and SSR. Eight-bit immediate data is stored in the TRA registers (bits 9 to 2). The processor
goes into privileged mode (SR.MD = 1) with SR.BL = 1 and SR.RB = 1, that is, blocking
exceptions and masking interrupts, and selecting BANK1 registers (R0_BANK1 to
R7_BANK1). Exception code 0x160 is stored in the EXPEVT register (bits 11 to 0). The
program branches to an address (VBR+H'00000100).

Operation:

TRAPA(int i) /* TRAPA #imm  */

{

int imm;

imm=(0x000000FF & i);

TRA=imm<<2;

SSR=SR;

SPC=PC+2;

SR.MD=1

SR.BL=1

SR.RB=1

EXPEVT=0x00000160;

PC=VBR+H'00000100;

}
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TST (Test Logical): Logic Operation Instruction

Format Abstract Code T Bit

TST Rm,Rn Rn & Rm, if result is 0, 1 ∅ T,
else 0 ∅ T

0010nnnnmmmm1000 Test results

TST #imm,R0 R0 & imm, if result is 0, 1 ∅ T,
else 0 ∅ T

11001000iiiiiiii Test results

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
if result is 0, 1 ∅ T, else 0 ∅ T

11001100iiiiiiii Test results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to
1 if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register R0 can also be ANDed with zero-extended 8-bit immediate data, or
the contents of 8-bit memory accessed by GBR-based index addressing can be ANDed with 8-bit
immediate data. The R0 and memory data do not change.

Operation:

TST(int m,int n) /* TST Rm,Rn  */

{

if((R[n]&R[m])==0)

T=1;

else T=0;

PC+=2;

}

TSTI(int i) /* TEST #imm,R0  */

{

if((R[0]&(0x000000FF & i))==0)

T=1;

else T=0;

PC+=2;

}
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TSTM(int i) /* TST.B #imm,@(R0,GBR)  */

{

int temp;

temp=(int)Read_Byte(GBR+R[0]);

if ((temp&(0x000000FF &i)==0)

T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 Before execution R0 = H'00000000

After execution T = 1

TST #H'80,R0 Before execution R0 = H'FFFFFF7F

After execution T = 1

TST.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution T = 0
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XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code T Bit

XOR Rm,Rn Rn ^ Rm ∅ Rn 0010nnnnmmmm1010 —

XOR #imm,R0 R0 ^ imm ∅ R0 11001010iiiiiiii —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm ∅
(R0 + GBR)

11001110iiiiiiii —

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by GBR-based index addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(int m,int n) /* XOR Rm,Rn  */

{

R[n]^=R[m];

PC+=2;

}

XORI(int i) /* XOR #imm,R0  */

{

R[0]^=(0x000000FF & i);

PC+=2;

}

XORM(int i) /* XOR.B #imm,@(R0,GBR)  */

{

int temp;

temp=(int)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}
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Examples:

XOR R0,R1 Before execution R0 = H'AAAAAAAA, R1 = H'55555555

After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 Before execution R0 = H'FFFFFFFF

After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) Before execution @(R0,GBR) = H'A5

After execution @(R0,GBR) = H'00
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XTRCT (Extract): Data Transfer Instruction

Format Abstract Code T Bit

XTRCT Rm,Rn middle 32 bits of 64-bit data ∅
Rn

0010nnnnmmmm1101 —

Description: Extracts the middle 32 bits of the 64-bit data of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 6.15).

Figure 10.15   Extract

Operation:

XTRCT(int m,int n) /* XTRCT Rm,Rn  */

{

R[n]=((R[m]<<16)&0xFFFF0000 )|((R[n]>>16)&0x0000FFFF);

PC+=2;

}

Example:

XTRCT R0,R1 Before execution R0 = H'01234567, R1 = H'89ABCDEF

After execution R1 = H'456789AB
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